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Hooke’s law states that the forces or stresses experienced by an elastic object are proportional to
the applied deformations or strains. The number of coefficients of proportionality between stress
and strain, i.e., the elastic moduli, is constrained by energy conservation. In this Letter, we lift this
restriction and generalize linear elasticity to active media with non-conservative microscopic interac-
tions that violate mechanical reciprocity. This generalized framework, which we dub odd elasticity,
reveals that two additional moduli can exist in a two-dimensional isotropic solid with active bonds.
Such an odd-elastic solid can be regarded as a distributed engine: work is locally extracted, or
injected, during quasi-static cycles of deformation. Using continuum equations, coarse-grained mi-
croscopic models, and numerical simulations, we uncover phenomena ranging from activity-induced
auxetic behavior to wave propagation powered by self-sustained active elastic cycles. Besides pro-
viding insights beyond existing hydrodynamic theories of active solids, odd elasticity suggests design
principles for emergent autonomous materials.

One of the central assumptions of classical elasticity is
that the work needed to deform a material element de-
pends only on its initial and final states [1]. If the work
is path dependent, the local stresses cannot be obtained
from derivatives of an elastic potential energy. Nonethe-
less, even without an elastic potential, the stress-strain
relation exists and can be linearized for small deforma-
tions. This approximation, known as Hooke’s law, is valid
for solids both in and out of equilibrium and can be cap-
tured by the equation σij = Kijmnumn, where umn are
the gradients ∂mun of the displacement vector un and
Kijmn is the stiffness tensor [1]. In the absence of an
elastic potential energy, we find that the most general lin-
ear stress-strain relation for an isotropic two-dimensional
solid reads (see Methods):

(1)

The geometric notation in Eq. (1) is illustrated in
Fig. 1a-b. The displacement gradients on the right-hand
side are decomposed along the four independent com-
ponents shown in Fig. 1: dilation, rotation, and the two
shear deformations S1 and S2. Similarly, the stress vector
on the left-hand side is decomposed into pressure, torque,
and the two shear stresses. The stiffness matrix repre-
sents the tensor Kijmn and contains all of the allowed
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elastic moduli [1]. The entries in the second column are
zero because no stress is generated by reorienting the
solid. Besides the familiar bulk modulus, B, and shear
modulus, µ, there are two additional entries in Eq. (1): A
and Ko. Qualitatively, the modulus A couples compres-
sion (and dilation) to an internal torque density in the
solid. By contrast, Ko describes a nonreciprocal response
in shear stress along a direction rotated with respect to
the applied shear strain, but Ko does not entail a net
torque density in the solid, see Fig. 1 (a precise classifi-
cation is provided in the Methods).

The presence of A and Ko violates a basic symmetry of
the elastic tensor: Kijmn = Kmnij . This so-called major
symmetry stems from the assumption that the stresses
are gradients of a free energy f = 1

2Kijmnuijumn, see
Methods. In this Letter, we lift this assumption and
consider an additional contribution to the stiffness ten-
sor absent in previous hydrodynamic theories of active
matter [2–14]: Kijmn = Ke

ijmn + Ko
ijmn with Ko

ijmn =
−Ko

mnij , which is antisymmetric or odd under exchange
of a pair of indices, in addition to the symmetric or even
component Ke

ijmn = Ke
mnij . When specialized to two-

dimensional isotropic media, Ko
ijmn gives rise to two ad-

ditional elastic moduli Ko and A, forbidden by energy
conservation, but allowed in active media and metamate-
rials with non-conservative interactions. We stress that
odd elasticity is a property of solids and is a distinct
phenomenon from odd or Hall viscosity and related ef-
fects [15–19] that pertain to the transport properties of
fluids.

Since odd elasticity cannot be obtained from a free
energy, the presence of A and Ko entails the ability
to take an odd elastic medium through a closed cy-
cle of quasistatic deformations with non-zero total work
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FIG. 1. Active elastic engine cycle. a. If a material has a nonzero odd modulus A, then compression results in an internal
torque density. However, rotation of the material induces no stresses. The black arrows represent applied strains, the dotted
lines denote the material’s undeformed shape, and the blue icons symbolize the internal stresses. b. The odd elastic modulus Ko

couples the two independent shear deformations. In contrast to passive anisotropic solids, the induced stress is always rotated
45◦ counter-clockwise with respect to the applied strain. c. A small patch of odd elastic material is subjected to a closed
cycle in strain space. Initially, the solid undergoes a counter-clockwise rotation through angle εθ. Then the solid undergoes
volumetric strain εV , inducing a torque density AεV . Next, as the object is rotated clockwise through angle εθ, the solid does
work AεV εθ on its surrounding. Finally, the object is compressed to its original size. As the initial and final configurations are
identical, zero net work is done due to bulk modulus B. The total work evaluates to A times the area enclosed in deformation
space: εV εθ. d. An analogous cycle involving only shear stress and shear strain. The horizontal axis (S1) denotes shear with
extension along the horizontal, and the vertical axis (S2) represents shear at 45◦. The work done is 2Ko times the area in
deformation space. e-g. A network of metabeams that leads to odd elasticity. The essential feature of the metabeam is a
chiral torque proportional to compression or extension. A metabeam can be subjected to a cycle of displacements that extracts
work. The work done is proportional to area enclosed times odd spring constant ko. For this example, the spring does net work
during the third leg of the cycle (pink to purple).
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∆w =
∮
Ko
ijmnumnduij done by (or on) the material. In

Fig. 1c, we show such a cycle in the space of rotations
and dilations. The initial and final configurations are
identical, hence, zero work is done by the conservative
part Ke

ijmn. By contrast, the total work done due to the
odd contribution Ko

ijmn is equal to the modulus A times
the area enclosed by the cycle in the space of deforma-
tions. Fig. 1d shows an analogous cycle which involves
only shear stress and shear strain. This cycle does not
require any torque density, hence it can be operated in a
solid for which A = 0. In this case, work is proportional
to the elastic coefficient Ko times the area in deforma-
tion space. Note that in both cycles the crucial feature is
nonreciprocity [20, 21]: compression induces torque, but
rotation does not induce pressure; similarly, S2 strain in-
duces positive S1 stress, but S1 strain induces negative S2

stress. If the cycle is performed in reverse, ∆w switches
sign. The elastic energy cycle is local: different portions
of an extended medium can operate independent cycles.
Moreover, each material patch can operate two cycles si-
multaneously, one in the space of compression/rotation,
and one in the space of shear strains.

Since energy can be extracted from an infinitesimal
patch of the odd elastic solid, the microscopic con-
stituents comprising the material must be active. For
simplicity, we assume that the solid is made of particles
that interact via a non-conservative pairwise force law
F(u), which depends only on the relative displacement u
from equilibrium. In the linear approximation, the most
general expression for such a force law reads:

F(u) = (−kr̂ + koφ̂) u · r̂, (2)

where r̂ denotes the unit vector along the bond orien-

tation and φ̂ is the unit vector perpendicular to the
bond. Consequently, for two-body interactions, the min-
imal necessary ingredient is that extension (compression)
of a bond results in a clockwise (counterclockwise) torque
generated by the transverse forces, F , represented by red
arrows in Fig. 1f. The parameter k sets the strength
of the spring potential, and ko sets the strength of the
transverse, nonconservative force [22].

In the S.I., we show that a triangular lattice of parti-
cles interacting with these non-conservative bonds has

odd moduli given by A = 2Ko =
√

3
2 k

o. Moreover,
odd elastic solids can exist with zero net torque den-
sity. In the S.I., we show that the bond strengths in a
honeycomb lattice with nearest-neighbor (NN) and next-
nearest-neighbor (NNN) interactions can be tuned so as
to eliminate the net torque within each of the hexagonal
plaquettes (shown in S.I. Fig. S1). The result is a mate-

rial in which A = 0, but Ko =
√

3
2 k

o
2, where ko2 refers to

the NNN-bond strength. We stress that any bonds ex-
erting forces for which ∇×F(u) 6= 0 will generically lead
to odd elastic moduli in the linear approximation [23].
Moreover, if a single constituent such as an active bond
can perform work during a quasi-static cyclic deforma-
tion (see S.I. and Fig. 1g), odd elasticity will generically

FIG. 2. Statics in an odd elastic solid. a. A honeycomb
lattice with nearest-neighbor and next-nearest-neighbor odd
springs can have Ko > 0 and A = 0 (and B,µ > 0). When
subject to uniaxial compression, such a solid responds by both
net contraction [proportional to ν (blue)] and horizontal de-
flection [proportional to νo (red)]. b. Force balance in the
uniaxial compression is shown schematically. Net strain can
be decomposed into compression and shear in two directions.
The resulting boundary stresses (arrows) cancel pressure on
top and bottom surfaces and maintain no stress on the sides.
Black arrows show the response in the absence of odd elastic-
ity, while the red arrows show stress S2 due to nonzero Ko,
which causes simple shear strain (S1). In turn, S1 generates
a negative pressure on the free sides, which causes the system
to horizontally contract. c. Analytical calculations for odd
and Poisson ratios with numerical validation. Simulations
are performed using the honeycomb lattice, see S.I.

arise irrespective of the microscopic details. Complex
mechano-chemical interactions provide additional exam-
ples of non-conservative bonds.

When the odd moduli A and Ko are present, even the
most familiar elastic phenomena appear in a new guise.
To elucidate the role of odd shear coupling Ko, we de-
pict in Fig. 2a the uniaxial compression of an odd elastic
material having Ko, B, µ > 0 and A = 0. In passive elas-
tostatics, uniaxial compression is used to determine the
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FIG. 3. Active elastic waves. a. Real-space profile of an overdamped odd elastic wave traveling in the positive x-direction
(for Ko � A,B, µ). The light-grey background shows the undeformed material: the wave deforms the background grid into the
thick black mesh. The ellipses illustrate the shear strain in a material patch and the disk-confined arrows represent the local
shear stress. b. If a single material patch is tracked in time, the strain in the material traces out a circle in shear space. This
circular trajectory encloses an area in strain space such that internal energy balances dissipative losses. The other essential
ingredient for wave propagation is that stress and strain inside each patch are 90◦ out of phase (color represents time). (See
Supplementary Movie 1.)

Poisson ratio ν ≡ −uxx

uyy
, i.e., the ratio between horizon-

tal strain uxx and vertical strain uyy. For passive solids,
the Poisson ratio can be made negative by tuning lattice
geometry or using three-body interactions [24]. Here,
we focus solely on the effect of activity. We find that,
regardless of microscopic realization, increasing the ac-
tivity

∣∣ 2Ko

B

∣∣ pushes the solid towards the auxetic limit of
ν = −1. Moreover, an additional response, not observed
in passive elasticity, emerges: the odd solid exhibits a
horizontal deflection of the top surface with respect to
the bottom surface, which we quantify via the odd ratio:
ν0 ≡ − uyx

2uyy
. Whereas in passive isotropic solids, the odd

ratio is zero due to left-right symmetry, the odd shear
coupling Ko manifestly breaks chiral symmetry and thus
allows the deflection. In Fig. 2b, we illustrate the aux-
etic behavior and show how the odd ratio results from
force balance at the boundary. In Fig. 2d-e, we plot an-
alytical predictions for ν and νo as solid black lines. To
validate our analytical results, we simulate a honeycomb
lattice that has both NN and NNN bonds. Using an an-
alytic coarse-graining procedure (see S.I.), we obtain the
desired values of Ko, µ, B, and A from the microscopic
spring constants. The measured Poisson ratio, plotted in
Fig. 2d, agrees well with the prediction of the continuum
theory without any fitting parameters.

We now turn to odd elastodynamics and study wave
propagation in the overdamped regime in which energy
injection due to activity can counteract dissipation [2,
19, 25, 26]. A distinctive feature of odd elastic waves is

that they exist even when the bulk and shear moduli are
vanishingly small. Fig. 3a shows a snapshot of a plane
wave traveling to the right in an overdamped solid in
which Ko � A,B, µ. (See Supplementary Movies 1 and
3.) The colored ellipses represent the strain in regions
bounded by the thick, black lines (c.f., the ellipses in
Fig. 1c). In the row underneath the ellipses, we show the
shear stress. In Fig. 3b, we plot the stress and strain of a
single deformed square as a function of time (indicated by
color) in the space of shear S1 and S2. Shear stress and
shear strain encode the basic mechanism for overdamped
elastic wave propagation.

In the overdamped regime without odd elasticity,
stress, strain, and momentum are all in phase and no
elastic wave propagation can exist. For an overdamped
odd elastic solid, Fig. 3b illustrates two crucial features.
First, stress and strain are out of phase due to the anti-
symmetric shear coupling Ko. Since stress and velocity
are in phase for an overdamped wave, an odd elastic solid
can mimic the phase delay between strain and velocity
that enables wave propagation in inertial, passive solids.
Second, the trajectory of the wave in strain space traces
out a circle. This circle indicates the emergence of an
autonomous, self-sustaining elastic engine cycle, in which
the system converts internal energy into mechanical work
to offset dissipative losses [c.f. Fig. 1c]. For a wave of am-
plitude R and wavenumber q, the circle has radius qR.
Therefore, by balancing the dissipative losses 2πηωR2 in
each period against energy injected 2πKoq2R2, we arrive
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FIG. 4. Phase diagram and exceptional points for odd
elastic waves. a. Phase diagram for waves in an overdamped
odd elastic solid. Red curves represent the boundary outside
of which active waves can be sustained. b. A cut (ΓMKΓ)
through the space of wavevectors (first Brillioun zone) of a
triangular lattice with generalized Hookean springs. The mi-
croscopic activity in the springs is characterized by the ratio∣∣∣ kok ∣∣∣ between odd spring constant ko and conservative spring

constant k. The threshold for active waves varies across the
Brilloin zone, with the elastic limit describing the region near
Γ. The middle inset shows the regions of the Brillouin zone

(light grey) in which waves propagate (for
∣∣∣ kok ∣∣∣ corresponding

to the horizontal dashed line). c. The eigenmodes for three
relative values of the elastic moduli, showing trajectories in
shear space (S1 and S2, c.f. Fig. 3). At zero activity ( ),
the modes correspond to longitudinal and transverse waves,
whose eigenvectors are orthogonal in S1-S2 space. At the ex-
ceptional point ( ), the eigenmodes become colinear. Above
the exceptional point ( ), the eigenmodes acquire a circular
polarization, performing a spiral through simultaneous rota-
tion and attenuation in phase space. (See Supplementary
Movie 3.)

at the speed of sound for these dispersive waves, given by
the group velocity dω/dq = 2Koq/η (see S.I.). Figure 3
shows active-wave propagation in the regime dominated
by Ko. When B and µ are nonzero, the waves decay
exponentially with a rate proportional to µ+B/2.

As activity decreases, there is a sharp cutoff below
which active waves can no longer be sustained. Figure 4a
shows this threshold for active wave propagation, high-
lighted in red. The phase diagram in Fig. 4a summarizes
the dynamic behavior of isotropic odd elastic solids, re-
gardless of their microscopic realization. To understand

the spectrum at shorter wavelengths, a microscopic struc-
ture must be specified. In Fig. 4b, we consider an un-
bounded triangular lattice of springs with conservative
spring constant k and odd spring constant ko. Analytic
coarse graining shows that this microscopic realization
corresponds to a position (set by ko/k) on the dashed line
in Fig. 4a. For large activity (i.e., |ko/k|), elastic waves
propagate, but at the critical value |ko/k| = 1√

3
, these

waves disappear. Elasticity describes the dynamics in the
neighborhood of Γ, and the ΓMKΓ cut in Fig. 4b shows
how the wave-propagation threshold varies depending on
the wavevector within the Brillioun zone. The middle
inset of Fig. 4b highlights the regions in the Brillioun
zone (light grey) for which waves can propagate when, as

an example,
∣∣ko
k

∣∣ is given by the horizontal dashed line.
The surprising feature is the existence of waves at short
lengthscales, well below the critical value in the contin-
uum theory of Fig. 4a. Figure 4c and Supplementary
Movie 3 illustrate the onset of elastic waves using three
cases. In the absence of activity ( ), the two eigenmodes
are longitudinal and transverse. As activity increases, the
eigenvectors are no longer orthogonal, and at the thresh-
old ko/k = 1√

3
, the eigenvectors are co-linear ( ). The

singularity caused by the degeneracy of the eigenvectors
is known as an exceptional point [27, 28]. Above the ex-
ceptional point ( ), odd elastic waves propagate with cir-
cular polarization, tracing out a spiral in shear space due
to attenuation. In the limit ko

k � 1, the waves become
self-sustaining and the spiral expands into an ellipse.

In summary, our work brings to light a hitherto ne-
glected facet of elasticity that applies generically to sys-
tems for which elastic energy cannot be defined. Future
work will explore applications of our theoretical frame-
work to biomechanical systems [10, 29], kinematics of
systems with transverse interactions such as gyroscopes
or vortex lattices [30], exotic viscoelastic quantum Hall
states [31] and active metamaterials functioning as emer-
gent soft robots that harvest energy, transmit it using
odd mechanical waves, and perform work at designated
sites.
Acknowledgments A.S., W.T.M.I., and V.V. ac-

knowledge primary support through the Chicago MR-
SEC, funded by the NSF through grant DMR-1420709.
C.S. was supported by the National Science Founda-
tion Graduate Research Fellowship under Grant No.
1746045. W.T.M.I. acknowledges support from NSF
EFRI NewLAW grant 1741685. P.S. was supported
by the Deutsche Forschungsgemeinschaft via the Leibniz
Program.

I. METHODS

A. Elastic energy and symmetries of the stiffness
tensor

The standard theory of elasticity begins with the pos-
tulation of an elastic free energy density f (see e.g.,



6

Ref. [1]). The requirement that the free energy be invari-

ant under translations of the solid implies ∂f
∂ui

= 0, so the
free energy is only a function of gradients of uj . In the
limit of long-wavelength deformations, the lowest-order
gradient uij = ∂iuj dominates. Mechanical stability im-

plies ∂f
∂uij

∣∣∣
uij=0

= 0, so the lowest order term in strain

must be quadratic. To linear order, the distances between
points change only due to changes in the symmetrized
displacement gradients usij ≡ 1

2 (∂iuj + ∂jui) (see, e.g.,
Ref. [32]). Therefore, usij defines the linear strain tensor.
Thus, the elastic free energy may be written as:

f =
1

2
Cijmnu

s
iju

s
mn, (3)

where Cijmn is a constant rank-4 tensor.
The stress tensor is given by:

σeq
ij =

∂f

∂usij
=

1

2
(Cijmn + Cmnij)u

s
mn. (4)

Thus, we obtain the constitutive relation σeq
ij =

Kijmnumn, where Kijmn is known as the elastic, or stiff-
ness, tensor. From Eq. (4) we see that

Kijmn =
1

2
(Cijmn + Cmnij) = Kmnij . (5)

Therefore, if a solid medium obeys a linear constitutive
relation which follows from a free energy, then the elastic
tensor must obey the major symmetry Kijmn = Kmnij .
Note that the definition σeq

ij ≡ ∂f/∂usij implies that the

stress is symmetric, σeq
ij = σeq

ji (because usij is symmet-

ric). In turn, this means that the non-active solid has no
internal torques (evaluated as σeq

ij εij = 0, where εij is the

two-dimensional Levi-Civita symbol).
In order to consider an odd elastic component Ko

ijmn =
−Ko

mnij , we cannot start in the usual way from an elas-
tic free energy. Instead, we begin from the constitutive
relations directly: σij = Kijmnumn. If, unlike Eq. (4),
the constitutive relations are not derived from an elastic
free energy density, then an odd elastic component can
exist.

B. Classification of elastic moduli

We suppose a solid body undergoes a deformation such
that a point originally located at position x (having
components xi) ends up at location Xi(x). We de-
fine the displacement vector field for the solid to be
ui(x) ≡ Xi(x) − xi, and define the displacement gra-
dient tensor to be uij(x) ≡ ∂iuj(x) (i.e., uij is related to
the deformation gradient tensor Λij ≡ ∂Xi(x)/∂xj via
uij = Λij − δij , where δij is the Kronecker-δ). Note that
to linear order, uij plays the role of an unsymmetrized
elastic strain tensor, which under the assumptions of ro-
tational invariance can be symmetrized in the usual way

(see below). The continuum version of Hooke’s law pos-
tulates that if the strains (i.e., displacement gradients)
are sufficiently small, the stress field σij(x) induced in a
solid due to the strain is given by:

σij(x) = Kijmnumn(x), (6)

where Kijmn is known as the elastic tensor or the stiff-
ness tensor. This assumption underlies linear elasticity
theory. In what follows, we assume that the material
is homogeneous, i.e., that Kijmn is constant in space.
The components of Kijmn are known as elastic moduli,
and they are the coefficients of proportionality between
stress and strain that characterize the elastic behavior of
a solid.

As we now show, basic assumptions about forces within
the solid, such as conservation of angular momentum
and conservation of energy, guarantee symmetries for the
form of the elastic tensor. For convenience, we work in
two dimensions and we introduce the following basis for
2× 2 matrices:

τ0 =

(
1 0
0 1

)
(7)

τ1 =

(
0 −1
1 0

)
(8)

τ2 =

(
1 0
0 −1

)
(9)

τ3 =

(
0 1
1 0

)
. (10)

In this basis, we define:

u0(x) = τ0
ijuij(x) Dilation (11)

u1(x) = τ1
ijuij(x) Rotation (12)

u2(x) = τ2
ijuij(x) Shear strain 1 (13)

u3(x) = τ3
ijuij(x) Shear strain 2 (14)

These four independent components define the full dis-
placement gradient tensor and can be interpreted as fol-
lows: u0 measures the local, isotropic dilation of the
solid. A dilation corresponds to change in area with-
out change in shape or orientation; u1 measures the lo-
cal rotation, which corresponds to change in orientation
without change in shape or area (Under transformations
of 2D space, u0 has the symmetry of a scalar and u1 has
the symmetry of a pseudo-scalar.) The two components
u2 and u3 define the shear strain, which corresponds to
change in shape without change in area or orientation.
(Under rotations of 2D space, u2 and u3 both behave
as bivectors, i.e., double-headed arrows. The combined
space spanned by τ2 and τ3 is precisely that of sym-
metric traceless tensors.) Specifically, u2 measures shear
strain with extension along the x-axis and contraction
along the y-axis (or vice versa), which we dub shear-1
for convenience. One the other hand, u3 measures shear-
2, which has the axis of extension rotated 45◦ counter-
clockwise with respect to shear-1. Note that two inde-
pendent shear vectors (in addition to compression and
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rotation) are needed to form a complete basis for arbi-
trary deformations.

We choose the same basis for the stress tensor:

σ0(x) = τ0
ijσij(x) Pressure (15)

σ1(x) = τ1
ijσij(x) Torque density (16)

σ2(x) = τ2
ijσij(x) Shear stress 1 (17)

σ3(x) = τ3
ijσij(x) Shear stress 2 (18)

The physical interpretation of these stresses are analo-
gous to the strains: σ0 is the (negative) of the isotropic
pressure. The component σ1 captures the antisymmet-
ric part of the stress, i.e., the torque density. The two
remaining components, σ2 and σ3, correspond to shear
stresses.

In this notation, we express the elastic tensor as a 4×4
matrix Kαβ = (τβ)−1

ij Kijmnτ
α
mn. Then Eq. (6) becomes:

σ
0(x)
σ1(x)
σ2(x)
σ3(x)

 =2

K
00 K01 K02 K03

K10 K11 K12 K13

K20 K21 K22 K23

K30 K31 K32 K33


u

0(x)
u1(x)
u2(x)
u3(x)

. (19)

Here, we review how the assumptions of symmetry and
conservation laws in the standard theory of elasticity con-
strain the form of Kαβ :

Assumption 1: Deformation dependence
(DD). A solid-body rotation of a material does not
change the distance between points within that ma-
terial (i.e., the metric). Therefore, one generally
assumes that solid-body rotations do not induce
stress, because stresses should only emerge if the
object is deformed, not merely due to changes in
orientation. The assumptions that solid-body ro-
tations do not induce stress is equivalent to the mi-
nor symmetry Kijmn = Kijnm, or in the notation
of Eq. (19), Kα1 = 0 for all α. Note that in our
derivation, we use the displacement gradient ten-
sor uij ≡ ∂iuj instead of the linear symmetrized
strain usij ≡ 1

2 (∂iuj + ∂jui) or the full nonlinear

strain tensor unlij ≡ 1
2 (ΛikΛkj − δij). The full ten-

sor unlij is rotationally invariant at all orders, and
at linear order reduces to usij (see, e.g., Ref. [32]).
If Kijmn has the minor symmetry Kijmn = Kijnm,
then the product Kijmnumn is the same whether or
not umn is symmetrized. We choose to work with
the displacement gradient tensor umn (i.e., unsym-
metrized strain) to be explicit about the assump-
tion of non-coupling to rotation.

Assumption 2: Isotropy (IS). Isotropy implies
that the elastic tensor remains unchanged through
a rotation of the coordinate system. A passive ro-
tation of the coordinate system through an angle θ

maps Kαβ 7→ Rαγ(θ)KγσRβσ(θ), where

Rγσ(θ) =

1 0 0 0
0 1 0 0
0 0 cos(2θ) sin(2θ)
0 0 − sin(2θ) cos(2θ)

. (20)

The requirement of isotropy can be restated as
Kαβ = Rαγ(θ)KγσRβσ(θ) for all θ. Hence, under
the assumption of isotropy, the most general form
of the elastic tensor is:

Kαβ = 2

K
00 K01 0 0

K10 K11 0 0
0 0 K22 K23

0 0 −K23 K22

. (21)

Assumption 3: Conservation of energy (CE).
In Section A of the S.I., we show that an an elastic
tensor is compatible with the conservation of en-
ergy if and only if Kijmn = Kmnij . In the notation
of Eq. (19), the condition for energy conservation
is Kαβ = Kβα.

Assumption 4: Conservation of angular mo-
mentum (CAM). A material conserves angular
momentum if it has no internal sources of torque.
In this case, one requires that σij = σji, or equiva-
lently σ1(x) = 0. To impose this constraint, one
has to impose the first minor symmetry for the
elastic tensor Kijmn = Kjimn, or in the notation
of Eq. (19), angular momentum conservation corre-
sponds to K1α = 0 for all α. Notice that a material
need not conserve angular momentum. For exam-
ple, a material composed of spinning parts which
accelerate or decelerate based on an internal ac-
tuation mechanism can have an internal source of
angular momentum via local torques.

Note that if assumption 1 (deformation dependence) is
the only assumption present, then Kαβ has 12 indepen-
dent components. In the standard theory of linear elastic-
ity with energy conservation (assumptions 3), the number
of independent components is reduced to 6. Note that as-
sumptions 1 and 3 together imply the minor symmetry
imposed by assumption 2 with no additional restrictions.
If one further assumes isotropy, the form of the elastic
tensor is restricted to have 2 independent components B
and µ:

Kαβ = 2

B 0 0 0
0 0 0 0
0 0 µ 0
0 0 0 µ

. (22)

Here, B is the familiar bulk modulus, which is the pro-
portionality constant between compression and pressure;
µ is the shear modulus, which is the proportionality con-
stant between shear stress and shear strain.
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In this work, we retain only assumptions 1 and 2 (de-
formation dependence and isotropy). We assume de-
formation dependence because in the solids we consider
stress only arises as a result of relative displacements (i.e.,
changes in the material’s metric), which immediately im-
plies assumption 1. Note that isotropy is not a strict re-
quirement, and many crystalline solids have anisotropic
stiffness tensors. However, we consider only the isotropic
case for simplicity. In this work we study odd elastic-
ity, which arises when we lift assumption 3 (conservation
of energy). Assuming isotropy, the general form of the
elastic tensor under these relaxed assumptions is

Kαβ = 2

B 0 0 0
A 0 0 0
0 0 µ K0

0 0 −K0 µ

. (23)

In this case, there are two new moduli: A and Ko. As
described in the text, A couples compression to internal
torque density. The modulus Ko, like the shear modulus
µ, is a proportionality constant between shear stress and
shear strain. However, Ko mixes the two independent
shears in an anti-symmetric way.

In our work, assumption 3 (energy conservation) is in-
dependent of assumption 4 (angular-momentum conser-
vation). This implies that Ko and A are independent
elastic moduli. We consider both cases: case (i), in which
angular momentum is conserved and the solid has no in-
ternal torque density (i.e., assumption 4 holds and A = 0)
as well as case (ii) in which internal torques and odd
elasticity coexist (i.e., assumption 4 does not hold and
A 6= 0). Even if A = 0, the modulus Ko can be nonzero.
Hence, the existence of odd elasticity is not contingent
on the presence of antisymmetric stress (or, equivalently,
local active torques).

In index notation, the most general form of the elastic
tensor from Eq. (23) is:

Kijmn = Bδijδmn + µ(δinδjm + δimδjn − δijδmn)

+KoEijmn −Aεijδmn,

where

Eijmn ≡
1

2
(εimδjn + εinδjm + εjmδin + εjnδim). (24)

C. Comparison of odd elasticity to other
approaches in active solids and metamaterials

In this section, we compare odd elasticity to other ap-
proaches that describe complex and active solids.

Cosserat elasticity refers to a theory in which an extra
microrotation field φ is introduced. In two dimensions,
this pseudoscalar field captures soft rotations of a solid’s
microscopic constituents. Although different couplings
between microrotation and elastic strain are possible, in
the most common version of Cosserat elasticity, this cou-
pling takes the form of the term (φ− εij∂iuj)2 added to

the elastic free energy density. This Cosserat elasticity
has a free energy density

f =
1

2
Kijmnu

s
iju

s
mn + αφ2 + β(φ− εij∂iuj)2, (25)

where usij ≡ 1
2 (∂iuj +∂jui) is the linearized strain tensor

and α and β are material parameters. Note the signifi-
cant differences between Cosserat elasticity and odd elas-
ticity. First, because Cosserat elasticity is based on a free
energy (i.e., it describes equilibrium solids), the corre-
sponding elastic tensor cannot allow an odd elastic com-
ponent, even if the microrotation field φ is integrated out.
Although microrotations allow for an off-diagonal torque-
compression coupling, Cosserat solids (because they are
not active) require a reactive rotation-pressure coupling,
leading to a purely symmetric elastic tensor. Second, the
defining feature of Cosserat elasticity is the extra micro-
rotation field. By contrast, odd elasticity introduces no
extra fields and the active terms come from stress-strain
response which is disallowed in equilibrium but which is
possible in an active solid.

The standard approach to many elastic systems, both
near and far from equilibrium, is based on entropy gen-
eration. However, in our work the smallest objects (the
constituent bonds) are macroscopic in scale. Any in-
creases in temperature within these objects do not result
in the thermal fluctuations of any translational degrees of
freedom—heat flows are decoupled from the mechanics.

Other examples of solids in which extra fields are
needed to describe complex elasticity include orienta-
tional order in liquid-crystal elastomers, electric fields in
ferroelectrics, and structural order in shape-memory al-
loys. In all of these cases, the solid is not active in the
way that the word is used in this work: ferroelectrics,
elastomers, or shape-memory alloys do not spontaneously
perform work on their environment, because these sys-
tems do not include microscopic motors that consume
energy. Furthermore, the constituent microscopic bonds
in these materials do not include active forces or torques
and our analysis does not apply. Instead, these solids
can be activated by applying an external field, leading to
exotic mechanics. The typical description of such acti-
vated solids relies on passive (normal) elasticity and the
addition of a stress field which can generate both bulk
forces and corrections to passive elasticity. In this work,
we take a different approach in which we include activity
in the constituent relations via the addition of odd-elastic
terms.
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II. SUPPLEMENTARY INFORMATION

A. Elastic energy cycle

In this section, we show that an elastic solid conserves
energy if and only if Kijmn = Kmnij . We represent
Kijmn as a 4× 4 matrix Kαβ (see previous section) and
write Kαβ = Ke

αβ + Ko
αβ , where Ke

αβ = Ke
βα is even

(i.e., conservative) and Ko
αβ = −Ko

βα is odd (i.e., non-

conservative).
The work per unit volume done on a solid in a quasi-

static, infinitesimal deformation is given by

dw = σijduij (S1)

=
1

2
σαduα (S2)

=
1

2
Kαβu

αduβ . (S3)

If we take a piece of material through a path of strains
that returns to the initial configuration, then the total
work per unit area done on the material is:

w =
1

2

∮
Kαβu

αduβ (S4)

=
1

2

∮
Ke
αβu

αduβ +
1

2

∮
Ko
αβu

αduβ . (S5)

Integration by parts yields:∮
Ke
αβu

αduβ = −
∮
Ke
αβu

βduα Integration by parts

(S6)

= −
∮
Ke
βαu

αduβ Relabel indices

(S7)

= −
∮
Ke
αβu

αduβ Ke
αβ = Ke

βα. (S8)

Consequently, 1
2

∮
Ke
αβu

αduβ = 0. This can also be
seen directly because Ke

αβ arises from a potential en-

ergy [see first Methods section]. Because the potential
energy depends only on the configuration and not on
the deformation path, the energy has to be the same
at the beginning and end of the closed cycle. There-
fore, the contribution to net work must be zero. We now
evaluate 1

2

∮
Ko
αβu

αduβ . For an isotropic solid, the anti-
symmetric part Ko

αβ takes the form:

Ko
αβ =

0 −A 0 0
A 0 0 0
0 0 0 2Ko

0 0 −2Ko 0

. (S9)

Even in the case of a more general solid, such as one that
violates isotropy or deformation dependence (see Meth-
ods), we can still choose a basis such that Ko

αβ takes the

form:

Ko
αβ =

 0 C 0 0
−C 0 0 0
0 0 0 D
0 0 −D 0

. (S10)

Let {c0, c1, d0, d1} be the basis vectors in this basis. For
an isotropic solid, the basis vectors are simply

c0 =

u
0

0
0
0

, c1 =

 0
u1

0
0

, (S11)

d0 =

 0
0
u2

0

, d1 =

 0
0
0
u3

. (S12)

The total work per unit area done on the solid can be
computed by projecting the path through 4D strain space
onto paths in the 2D subspaces of ci and di:

w =
C

2

∮
εijcjdci +

D

2

∮
εijdjddi, (S13)

where in this case the i and j indices run over 0 and 1.
Examples of these paths are illustrated in Fig. 1. Let
Ac be the region enclosed by the ci path and Ad be the
region enclosed by the di path. Application of Stokes’
theorem then gives:

w = C

∫
Ac

d2c+D

∫
Ad

d2d, (S14)

= C area(Ac) +D area(Ad). (S15)

To conclude, if the major symmetry Kijmn = Kmnij

holds, then the odd elastic component is zero (Ko
αβ = 0),

so w = 0 and no work is done on or by the material
during a closed cycle. However, if Ko

αβ is nonzero, then
a path through deformation space can always be found
such that w 6= 0 after a closed cycle. Here, we presented
the proof in two dimensions, but the same approach can
be used to generalize this statement to any dimension.

B. Microscopic model

In order to construct microscopic lattice models that
exhibit odd elasticity, we introduce active springs with
unusual force laws. For a spring of rest length ` that
connects two particles at locations x and y, the force on
particle y as a function of the separation ∆x = y − x is
given by:

F(∆x) = −
(
k

∆x

|∆x|
+ ko

∆x∗

|∆x|

)
(|∆x| − `), (S16)

where ∆x∗i = εij∆xj . The first term, proportional to k,
is the familiar Hooke’s law, and the second term, propor-
tional to ko, supplies a force perpendicular to the direc-
tion of the bond or, equivalently, a torque acting on the
middle of the spring along an out-of-plane axis.
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FIG. S1. Torque-free honeycomb plaquette. a. A
honeycomb lattice can be connected out of nearest-neighbor
(dashed) and next-nearest-neighbor (solid) springs with odd
spring constants ko1 and ko2 , respectively. The odd spring con-
stants can be tuned so that ko1 = −6ko2 , indicating that the
two varieties of springs exert torques of opposite handedness
when stretched or compressed. This figure illustrates quali-
tatively how the net internal torque density vanishes for all
(linear) deformations, despite the basic units being springs
which individually exert torques. b. A compression results
in a shortening of all the springs, but the NN and NNN odd
spring constants are tuned such that the net torque density
is zero (blue indicates torque into the page, and red indicates
torque out of the page). c.-d. The NN lattice is soft to shear
(i.e., the bonds are unstretched), so the only contribution to
the forces comes from the NNN springs. The result is a shear
stress along the boundary of the unit cell with zero net torque
density (the red and blue cancel). Note that the NNN bonds
of a honeycomb lattice form two disjoint triangular lattices
which provide shear coupling.

Note that Eq. (S16) is nonconservative since
∇∆x × F 6= 0. Therefore, there exists cycles at the level
of a single bond such that work can be extracted or in-
jected. Hence, in the case that odd elasticity arises from
pairwise interactions, the continuum elastic engine cy-
cles actuate microscopic engine cycles at the single bond
level.

As examples, we consider this force law in the context
of two different lattice geometries. First, we place the
springs on a triangular lattice with lattice spacing `. The
resulting moduli are

B = 2µ =

√
3

2
k, (S17)

A = 2Ko =

√
3

2
ko. (S18)

Second, we consider a honeycomb lattice with next-
nearest-neighbor springs. The nearest-neighbor springs
have spring constants k1 and ko1, and the next-nearest-
neighbor springs have spring constants k2 and ko2. The

resulting moduli are:

B =
k1 + 6k2

2
√

3
(S19)

A =
ko1 + 6ko2

2
√

3
(S20)

µ =

√
3k2

2
(S21)

Ko =

√
3ko2
2

. (S22)

Note that for the honeycomb lattice, we set ko1 = −6ko2.
In this case, the net torque density (proportional to A),
vanishes for all linear deformations. Importantly, the odd
shear coupling does not vanish for this choice of spring
constants. Thus, odd elasticity can exist without anti-
symmetric stress, making theory ostensibly distinct from
concepts such as Cosserat. For a mechanistic illustration
of how the torque density cancels, see Fig. S1.

To obtain these analytically coarse-grained results, we
follow the standard approach, see e.g., Ref. [33]. Consider
a lattice with n particles per unit cell. For simplicity, we
set the lattice spacing to 1. In the harmonic approxima-
tion, the force on each particle is given by the dynamical
matrix expression:

Fαi (R) = −
∑
R′

Dαβ
ij (R−R′)uβj (R′), (S23)

where there is an implicit summation over repeated in-
dices. The upper Greek index labels the particle in the
unit cell and runs over α = 0, . . . , n − 1, and the lower
Latin index labels spatial dimension i = x, y. The ma-

trix Dαβ
ij (R) is the dynamical matrix and is determined

by the inter-particle interactions and geometry of bonds.
The Fourier transform of Eq. (S23) gives:

Fαi (q) = −Dαβ
ij (q)uβj (q). (S24)

For the triangular lattice we consider, we have:

Dij(q) = (kδik + koεik)Akj(q), (S25)

where Akj are components of a 2 × 2 symmetric matrix
given by

Axx(q) = 3− 2 cos(qx)− cos
(qx

2

)
cos

(√
3qy
2

)
(S26)

Ayy(q) = 2− 3 cos
(qx

2

)
cos

(√
3qy
2

)
(S27)

Axy(q) = Ayx =
√

3 sin
(qx

2

)
sin

(√
3qy
2

)
. (S28)

For the honeycomb lattice, we find

Dαβ
ij (q) = (k1δik + ko1εik)Bαβkj (q)

+ (k2δik + ko2εik)Cαβkj (q), (S29)



11

where

B00
ij = B11

ij =
3

2
δij (S30)

B01
ij = (B10)†ij (S31)

=
1

4

(
−1− eiqy − 4e

−i
(√

3qx
2 − qy

2

) √
3
(
1− eiqy

)
√

3
(
1− eiqy

)
−3
(
1− eiqy

))

C00
ij = C11

ij =

(
Ayy Ayx
Axy Axx

)
(S32)

C01
ij = (C10)†ij = 0. (S33)

If ko → 0, we recover the familiar dynamical matrices
for the triangular [from Eq. (S25)] and honeycomb [from
Eq. (S29)] lattices. The effect of the active torques is to
modify the dynamical matrix expression via the transfor-
mation kδik → kδik + koεik. The internal active torques
ko that we have introduced correspond precisely to the
antisymmetric component of the dynamical matrix.

To determine the elastic tensor from the dynamical
matrix, we proceed again following the standard proce-
dure of calculating the response of a ball-and-spring lat-
tice to large-scale deformations (see, e.g., Ref. [34]). A
peculiarity of the approach for odd elastic systems is that
it must be based on forces and constitutive stress-strain
relations and not on the kinematic, potential-energy for-
mulation. First, we perform a change of basis such that

vαi = Uαβuβi , with

Uαβ =
1

n


1 1 1 1 · · · 1
−1 n− 1 −1 −1 · · · −1
−1 −1 n− 1 −1 · · · −1
...

. . .

. (S34)

Notice that v0
i is the center-of-mass coordinate. (We have

assumed, for simplicity, that all the particles are of equal
mass). We denote the dynamical matrix in this basis by

D̃αβ
ij (q). We use the upper-case Latin indices A,B =

1, . . . , n− 1.

Note that v0
j can be large (compared to a lattice spac-

ing, which we set equal to 1), but qi and vAi are as-

sumed small. Furthermore, D̃α0
ij (0) = D̃0β

ij (0) = 0, and

∂D̃00
ij

∂qm

∣∣∣∣
q=0

= 0. Therefore, expanding to lowest order in

the small quantities, we find(
iqm

V
n σmi(q)
v̈Ai (q)

)

= −

qmqn
1
2

∂2D̃00
ij

∂qm∂qn

∣∣∣∣
q=0

qm
∂D̃0B

ij

∂qm

∣∣∣∣
q=0

qn
∂D̃A0

ij

∂qn

∣∣∣∣
q=0

D̃AB
ij (0)

(v0
j (q)
vBj (q)

)
(S35)

= −

−iqm
1
2

∂2D̃00
ij

∂qm∂qn

∣∣∣∣
q=0

qm
∂D̃0B

ij

∂qm

∣∣∣∣
q=0

−i ∂D̃
A0
ij

∂qn

∣∣∣∣
q=0

D̃AB
ij (0)

( unj
vBj (q)

)
,

(S36)

where V is the (dimensionless) area of the unit cell, unj
are the displacement gradients, and we have used the re-
lation v̈0

i = iqmσmj/ρ. When a macroscopic deformation
is applied to the material, the microscopic unit cell de-
forms according to the force-balance condition v̈Ai = 0.
This deformation can be non-affine if the lattice has more
than one particle per unit cell. Using the force-balance
condition, we write σmi = Kminjunj where

Kminj =
n

V

(
Aminj − TBmik

[
CABpk

]−1
SApnj

)
(S37)

and

(
Aminj TBmij
SAinj CABij

)
≡


1
2

∂2D̃00
ij

∂qm∂qn

∣∣∣∣
q=0

i
∂D̃0B

ij

∂qm

∣∣∣∣
q=0

−i ∂D̃
A0
ij

∂qn

∣∣∣∣
q=0

D̃AB
ij (0)

.
(S38)

We assume that CABij is invertible, which is equivalent to
assuming that the lattice has no zero modes that preserve
the center of mass of the unit cell. Additionally, we have
assumed that all of the particles have equal mass. By
modifying the form of Uαβ , this expression can be gen-
eralized to lattices composed of particles with different
masses.

C. Derivation of Poisson and odd ratios

We consider an unbounded, odd elastic material with
no net internal torque: A = 0. In a uniaxial compression
with free boundaries on the two sides parallel to the di-
rection of compression, the material stress is captured by
tensor components σyy = p, σxx = σxy = σyx = 0. To fix
the solid’s orientation, we impose the condition uxy = 0,
so that the top and bottom horizontal boundaries remain
horizontal. In this elastic stability problem, we seek to
solve for the strain everywhere inside the material. Using
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the notation σα = Kαβuβ , we obtain: p
0
−p
0

 = 2

B 0 0 0
0 0 0 0
0 0 µ Ko

0 0 −Ko µ


 u0

−u3

u2

u3

, (S39)

Noting that uxx = 1
2 (u0 + u2) and uyy = 1

2 (u0 − u2) and

uyx = 1
2 (u3 − u1), we invert Eq. (S39) to obtain:

uxx =
p

4

(
(Ko)2 + µ2 −Bµ
B[(Ko)2 + µ2]

)
(S40)

uyy =
p

4

(
(Ko)2 + µ2 +Bµ

B[(Ko)2 + µ2]

)
(S41)

uyx =
p

2

(
−Ko

(Ko)2 + µ2

)
. (S42)

From Eq. (S40) through Eq. (S42), we obtain expressions
for the odd ratio, Poisson ratio, and Young’s modulus:

ν = −u
s
xx

usyy
=
Bµ− (Ko)2 − µ2

(Ko)2 + µ2 +Bµ
(S43)

νo = −
usyx
usyy

=
KoB

(Ko)2 + µ2 +Bµ
(S44)

E =
p

usyy
=

4B[(Ko)2 + µ2]

(Ko)2 + µ2 +Bµ
. (S45)

(Recall that usij ≡ 1
2 (uij+uji) is the symmetrized strain).

This result applies exactly for an infinitely large, un-
bounded solid. Specifically, the result applies asymptot-
ically in the limit of a wide solid being compressed with
pressure p with sliding boundary conditions on the top
and bottom surfaces.

D. Numerics

In this section, we describe the molecular dynamics
simulations used to validate our analytical calculations.
Each particle is given a position xi, where the subscript
i = 1, . . . , N labels the particle. The particles are ar-
ranged on a lattice with a fixed bond topology. For over-
damped dynamics, the physical particle positions evolve
according to the equation γ dxi

dt = Fi({x1, . . . ,xN}(t)),
where the right-hand side is the force on particle i as com-
puted using particle positions at time t. For numerical
integration, we non-dimensionalize this equation by set-
ting the lattice spacing a = 1 and ko

γ = 1, where ko is the

characteristic spring constant for that lattice. This non-
dimensionalization is equivalent to sending xi 7→ xi/a
and t 7→ tγ

ko
.

Using this non-dimensionalization, the position of each
particle is updated according to second-order Runge-
Kutta. In our case, Runge-Kutta is the appropriate in-
tegrator because the energy is not conserved. In the
overdamped regime, the governing equations of motion

are first order, and this method offers an alternative to
variational integrators appropriate to second-order equa-
tions of motion that conserve energy (or in which energy
is nearly conserved, as in Ref. [35]). Using second-order
Runge-Kutta, the equations for updating the particle po-
sitions read

xi(t+
1

2
∆t) =

1

2
∆tFi({x1, . . . ,xN}(t)) + xi(t) (S46)

xi(t+ ∆t) =∆tFi({x1, . . . ,xN}(t+
1

2
∆t)) + xi(t),

(S47)

where Fi({x1, . . . ,xN}(t)) is the force on particle i as
computed by the particle positions at time t. The force
is given by summing Eq. (S16) over all the neighbors of
particle i.

We use this approach to simulate the following:

Uniaxial compression. The data in Fig. 2 are
produced by simulating a uniaxial compression. In
order to achieve A = 0, we use a honeycomb lat-
tice with nearest- (NN) and next-nearest-neighbor
(NNN) springs. The system consists of 60 unit
cells in the x-direction and 30 unit cells in the y-
direction. We assign the conservative spring con-
stants values k1 = 9.6 for NN springs and k2 = 0.4
for NNN springs (this corresponds to a solid with
B = 10µ = 3.5). We then set the odd spring con-
stant ko1 = −6ko2, consistent with the analytical cal-
culations for A = 0. We perform simulations with
ko1 taking values from 0 to 6.0 in increments of 0.5.
The time-step is ∆t = 0.001, and the simulation
runs for a total time tf = 1.

Before we begin time-integration, we apply an ini-
tial affine strain of the form uyy = ε, uxx = −νε,
and uyx = −ν0ε, with ε = 0.01, where ν and νo

are determined using Eq. (S43) and Eq. (S44), re-
spectively, and the values of Ko, A, µ, and B are
determined using Eqs. (S19-S22). We then allow
the system to relax using the second-order Runge-
Kutta integration described above. During this
relaxation, we apply a constant outward force to
the top and bottom row of particles in order to in-
duce a pressure εE, where E is determined using
Eq. (S45). Once the system has equilibrated, we
measure the strain field using least-squares regres-
sion on the particle displacements. The strain field
is then used to compute the odd and Poisson ratios
which appear in Fig. 2.

Plane waves. In Supplementary Movie 2, we show
an odd elastic plane wave propagating in the −ŷ di-
rection through a triangular lattice of generalized
Hookean springs. The springs in this simulation
have spring constants k = 0 and ko = 1, which cor-
respond to coarse-grained elastic moduli µ = B = 0

and A = 2Ko =
√

3
2 . The system is a 30×30 trian-

gular lattice with periodic boundary conditions on
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all sides. The particles are initially displaced ac-
cording to Eq. (S57) with displacement amplitude
0.2, and are evolved using the second-order Runge-
Kutta integration described above with time-step
∆t = 0.005 and total time tf = 100.

E. Elastodynamics

In the bulk of a dissipative elastic solid, the equation of
motion for the components uj of the displacement vector
field reads:

ρüj + ηu̇j = ∂iσij = Kijmn∂i∂mun. (S48)

In the overdamped regime, ηu̇j � ρüj , Eq. (S48) re-
duces to a first-order equation:

ηu̇ = ∂iσij = Kijmn∂i∂mun. (S49)

Split into components, the Ko- and A-dependent parts
of the right-hand side read:

ηu̇x = Ko(∂2
x + ∂2

y)uy −A(∂2
yuy + ∂y∂xux), (S50)

ηu̇y = −Ko(∂2
x + ∂2

y)ux +A(∂2
xux + ∂x∂yuy). (S51)

Although Eqs. (S49-S51) appear to describe purely
diffusion-like dynamics, they nevertheless allow for prop-
agating solutions, analogous to the propagation of Avron
waves in Ref. [16]. However, whereas for Avron waves,
the equation of motion describes the velocity field in
a fluid, Eqs. (S49-S51) describe the displacement field
within a solid.

By assuming solutions of the form ui(x) =
ũi(q)ei(q·x−ωt), we find the Fourier transform of
Eq. (S49):

−iωηũj = qiqmKijmnũn. (S52)

Using expression Eq. (23) for Kijmn, the right-hand side
can be rewritten using a 2× 2 matrix:

qiqmKijmnũn = q2

(
B + µ Ko

−Ko −A µ

)(
u‖
u⊥

)
, (S53)

where u‖ = q̂iũi and u⊥ = εij q̂iũj . The normal modes of
the bulk elastic spectrum are given by the eigenvalues of
Eq. (S53):

ω = −i

B
2

+ µ±

√(
B

2

)2

−KoA− (Ko)2

q2

η
. (S54)

Eq. (S54) contains information about the stability of the
solid and its ability to propagate waves. For example,
Fig. 4a shows boundaries for the onset of waves and in-
stability. Instability occurs when the spectrum acquires
a positive imaginary branch (because in that case, the

exponential eIm(ω)t grows in time), which corresponds to
the boundary defined by:

Ã = − (2µ̃+ µ̃2 + (K̃o)2)

K̃o
, (S55)

where the tilde indicates that the moduli are normalized
by B

2 . The onset of waves occurs when ω acquires a real

part (because in that case, the exponential e±iRe(ω)t os-
cillates in time), which occurs along the boundary defined
by:

Ã =
1

K̃o
− K̃o. (S56)

The corresponding eigenvectors are:

ui =

(
1±

√
1− K̃oÃ− (K̃o)2

)
q̂i − (Ã+ K̃o)εjiq̂j√

2

(
1±

√
1− K̃oÃ− (K̃o)2

)
+ K̃oÃ+ Ã2

.

(S57)

From Eq. (S57), we see that the two branches have eigen-
vectors which are no longer orthogonal. Indeed, for non-
vanishing activity, the dynamical matrix in Eq. (S53)
is non-Hermitian due to the injection of energy by ac-
tive components. Note that Eq. (S57) reveals an impor-
tant feature about the transition towards the propaga-
tion of elastic waves, described by Eq. (S56). This tran-
sition is characterized by two coinciding features: (i) the
spectrum acquires a degeneracy and (ii) the correspond-
ing eigenvectors become co-linear. Such transitions are
known as exceptional points [27, 28]. Above the excep-
tional point, perpendicular and parallel components of
the eigenvector become out of phase, and thus the dis-
placement field has circular motion (see S.I. movies).

An insightful exercise is to calculate the spectrum in
the limit |Ko| � B,µ,A. In this case, the displacement
vector ui traces out a circle as a function of time. Suppose
that this circle has radius R. Then for a wave with wave
vector qi, the strain takes the form uij = iqiuj . Hence, a
circle of radius qR will be traced out in S1-S2 space, so
the work done by the odd elastic material in a single cycle
is 2πKoq2R2. The energy dissipated due to viscosity on
a single cycle of period T = 2π

ω is given by η|u̇|2T =

2πωR2. Hence balancing the energy injected with the
energy dissipated gives ω = Ko

η q
2, which agrees with

Eq. (S54).

F. Microscopic spectrum

In the overdamped regime, the linearized microscopic
equation of motion is:

−iγωui(q) = Dij(q)ũj(q), (S58)
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where Dij(q) is the dynamical matrix and γ is a micro-
scopic drag coefficient that is related to the macroscopic
drag coefficient by η = γ

V , where V is the area of the unit
cell.

For an unbounded triangular lattice with interactions
of the form in Eq. (S16), we obtain an analytic form for
the spectrum:

ω(qx, qy) =− i
(

3− cos(qx)− 2 cos
(qx

2

)
cos

(√
3qy
2

)
± 1√

2

{
3− cos(qx) + cos(2qx)− 2 cos

(qx
2

)
cos

(√
3qy
2

)

− 2 cos

(
3qx
2

)
cos

(√
3qy
2

)
− cos

(√
3qy

)
+ 2 cos(qx) cos

(√
3qy

)
+ 3r2

[
− 6 + 3 cos(qx)

+ 6 cos
(qx

2

)
cos

(√
3qy
2

)
− 2 cos

(
3qx
2

)
cos

(√
3qy
2

)
− cos

(√
3qy

)]}1/2)
,

where for convenience we set the lattice spacing, spring constant k, and drag coefficient η all equal to 1 and we define
r ≡ ko/k.
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