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Chirality occupies a central role in fields ranging from biological self
assembly to the design of optical meta-materials. The definition of
chirality, as given by lord Kelvin in 1893, associates handedness with
the lack of mirror symmetry, the inability to superpose an object on
its mirror image [1]. However, the quantification of chirality based
on this definition has proven to be an elusive task [2, 3]. The dif-
ficulty in quantifying chirality is contrasted by the ease with which
one determines the handedness of objects with a well defined axis
such as screws and helices. We present table-top demonstrations
that show that a single object can be simultaneously left handed
and right handed when considered from different directions. The
orientation dependence of handedness motivates a tensorial quan-
tification of chirality relating directions to rotations, and suggests
an extension of Lord Kelvin’s definition. We give explicit examples
of such tensorial measures of chirality and show how the tensorial
nature of chirality can be probed in experiments and exploited as a
design principle for chiral meta-materials.
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Chiral phenomena often span many length scales. The dis-
tinct handedness displayed by the proteinogenic amino

acids persists over nine orders of magnitude and manifests
in the full organism scale [4], for example by positioning our
hearts on the left. As the forces holding the building blocks
of our body together are symmetric under reflection, had the
amino acids opposite handedness so would have the position-
ing of the our visceral organs [5]. This suggests a connection
between the chirality of a body and that of its constituents.
Quantifying this connection, however, has proven to be highly
non-trivial even when considering relatively simple systems.1

Associating a number with the chirality of an object such
that it is consistent with lord Kelvin’s definition - i.e. that it
change sign under reflections (transform as a pseudo-scalar)
and vanish only for bodies which are mirror symmetric (su-
perposable on their own mirror image)2 - has proven to be an
impossible task [7, 3]. This is because it is always possible
to continuously deform a body into its mirror image without
passing through a configuration which is mirror symmetric3.
It follows that all scalar chiral measures either possess false ze-
ros (assign a vanishing chirality to objects which are not mir-
ror symmetric) or are not pseudo-scalar. Many operational
measures, such as the optical activity of an isotropic body,
are naturally pseudo-scalar and therefore must possess false
zeros; for this reason they have been argued to be inadequate
[8]. In order to avoid false zeros chirality “degree” measures,
which do not change sign under reflections, have been defined
[3]. Examples include measuring the distance (with respect
to a configurational metric) of an object from its mirror im-
age [9] or from the closest mirror symmetric body [10]. It is
however unclear how these chirality degree measures relate to
physically measurable chiral quantities.

In Lord Kelvin’s definition of chirality the lack of mirror
symmetry (which is synonymous with broken parity symme-
try), is taken to be the essential ingredient. The ability to
assign either a left or right handedness to an object is, how-
ever, not captured by this definition of chirality. In this letter
we show that adopting the physicists notion of handedness as
a relation between directions and rotation leads to naturally
tensorial and thus orientation dependent measures of chirality.
While isotropic averages of these measures recover Kelvin’s

definition, the full measures predict orientation-dependent
chiral behavior even for objects that are mirror symmetric.
This orientation dependent approach is made quantitative,
applied to experiments and shown to provide a natural tool
for the design of chiral meta-materials.

Figure 1 shows a thin elastic bi-layer whose internal struc-
ture is homogeneous in the plane and symmetric under reflec-
tions. When long and narrow strips are cut from the bilayer
they curve to form helicoidal strips of both right and left hand-
edness depending on the relative orientation of the strips and
the directions in which the layers were stretched. The hand-
edness of each of the helicoidal strips is easily determined by
following the surface’s face with the right hand. If advancing
along the helicoid’s length requires the hand to roll outward,
the helicoid is said to be right-handed (see for example the
helicoidal strip in Figure 1 C.IV).

As the orientation of the boundary of a given cutout to-
gether with the intrinsic structure of the bi-layer break the
bi-layer’s mirror symmetry, one may argue that the appear-
ance of handedness is to be expected. However, further ex-
amination reveals that even the cutouts that possess mirror
symmetry (such as the cutout c.II) display one handedness
in the ±x directions and the opposite handedness in the ±y
directions.

Neither (pseudo-)scalars nor (pseudo-)vectors are capable
of capturing this behaviour. The simplest object that captures
such an orientational variation is a (rank 2) pseudo-tensor
such as the one shown in Eq. 1:

X = c




1 0 0
0 −1 0
0 0 0


 . [1]

This pseudotensor is symmetric under reflection, associates
the x direction with a right (+) handed rotation about the x
axis, and associates the y direction with a left handed rotation
(-) about the y axis.

Reserved for Publication Footnotes

1For example, Straley [6] showed that simple steric interactions can drive right handed “screw like”
molecules to stack in both right handed and left handed fashions depending on the relative values
of the microscopic pitch and the molecular diameter.
2Such bodies are sometimes called achiral or amphichiral. The group of mirror symmetric object
contains the subset of objects that possess symmetry under reflections, and the subset of objects
which possess symmetry under inversions.
3This property, known as chiral connectedness holds for all three dimensional bodies possessing five
or more degrees of freedom, in particular all continuous bodies.
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Fig. 1. Orientation dependent manifestation of chirality in a
reflection symmetric continua. Two identical rubber sheets are uniaxially

stretched and glued together to form a rubber bilayer as done in [11]. Narrow strips

cut from the bilayer curve out of plane to accommodate the difference in rest length

between the layers and form helical structures. The square boundaries in b.II give

rise to a cutout c.II which is symmetric under reflections. This is a manifestation of

the symmetry of the bilayer’s intrinsic structure. If, however, the cutout boundaries

do not respect the bi-layer’s symmetry, e.g. b.III and b.IV, strips with a well defined

handedness result, as seen in c.III, and c.IV. The handedness observed depends solely

on the orientation of the strip’s long axis; strips aligned with one diagonal generate

right handed helicoids, whereas strips oriented in the perpendicular direction generate

left handed helicoids. Slicing a narrow piece from a left handed strip such that its

aspect ratio is inverted yields a narrower strip of opposite handedness as seen in c.V

which was cut from c.VI.

The square cutout c.II holds the capacity to generate both right and left handed strips.

We thus consider it as possessing both right and left handedness in equal amounts

rather than being achiral. It is right handed along the x direction, and left handed

along the y direction. This directional dependence of the chirality is also observed

in the relative positioning of cut-outs c.II, c.III and c.IV where the symmetric cutout

c.II can be seamlessly continued in to manifestly Right or Left handed helical struc-

tures. Such an oriented dependant chirality cannot be captured by any pseudo-scalar

measure and calls for quantification by a pseudo-tensor.

The notion of handedness employed above can be captured
by an orientation dependent chirality pseudo-tensor density,
χe. For every two unit vectors n̂ and m̂ we take the contrac-
tion m̂χen̂ to quantify the rotation of the surface’s normal
about the vector m̂ when it is displaced along the surface
in the direction projected from n̂. It will be positive if the
rotation about m̂ is right handed and negative when the asso-
ciated rotation is left handed. This chirality density, similar
in spirit to the tensorial measure proposed in [12], can be
given explicitly in terms of the surface’s fundamental forms
(see appendix) and may be integrated to give a tensorial chi-
ral measure of the surface as a whole: X eij =

∫∫
χeij dA. For

example, calculating X e for the symmetric cutout in figure 1
c.II yields a chirality tensor of the form given in Eq. [1], as
expected from its symmetry, with c = 14mm−1.

When the same measure applied above to a mirror
symmetric object is applied to the elongated helicoidal
strips, IV and III, it gives rise to diagonal chirality ten-
sors with the diagonal components (88,−44,−44)mm−1 and
(44,−88, 44)mm−1 respectively. These tensors are no longer
mirror symmetric, but are mirror images of each other and
traceless. The latter is because every local measure of hand-
edness on strictly 2D surfaces (containing no additional struc-
ture) gives rise to a symmetric and traceless rank two pseudo-
tensor (see SI7 for proof).

Tensorial measures need not in general be the result linear
summation from a local density, and may not be available in
explicit form. Nonetheless, the different tensor components
may be probed operationally. An example of this, is provided
by the experiment reported in Figure , which shows a sec-
tion of a right handed helicoid that was constrained to rotate
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Fig. 2. Probing the different components of chirality: Air flow past
a helicoid. Two identical right handed helicoidal surfaces, supported by thin cylin-

drical rods oriented along perpendicular directions display opposite response to airflow.

The helicoids were printed using a three-dimensional printer (Objet Connex350TM )

and measure 2cm wide and πcm long. The axis of the first helicoid is oriented along

its length (a), whereas the axis of the second helicoid is oriented along the traverse

direction (b). The structures were placed in an airflow and their axes hinged to allow

free rotation about the direction of flow. (a) As air flows past the longitudinal axis

of the helicoid, the latter rotates in a left handed fashion. (b) The same helicoid

rotates in right-handed fashion when hinged along the perpendicular direction. Sur-

prisingly, the helicoid hinged along the traverse direction rotates faster than the one

hinged along its long axis.

about each of two perpendicular axes and subjected to an air-
flow along the constraint axis. When constrained along its
longest direction, the flow induced a left handed rotation, as
expected. When constrained to rotate about the perpendic-
ular direction, the same flow induced a (faster) right-handed
rotation.

As a third and final example of the application of tenso-
rial measures in capturing chiral behavior we now consider
optical scattering. Traditionally, optical scattering has been
used as a probe for the chiral shape of invisible molecules,
the implicit assumption being the existence of a direct con-
nection between a ‘chiral’ electronic shape of each molecule,
randomly oriented in solution, and the rotation of the polar-
ization of light traveling through the solution. The manifes-
tation of any handed phenomena in such isotropic collections
of molecules necessitates the absence of mirror symmetry. For
non-isotropic structures, however, this is not the case as ob-
served by the optical activity of the mirror symmetric crystal
of Silver Gallium Sulphide [14]. Recently, in designing optical
meta-materials it has become possible to consider scatterers,
including mirror symmetric ones, at fixed orientations. One
of the key questions is to understand the relation between the
shape of these scatterers and functional optical response. In
attempts to design tunable optically active meta-materials,
recent experiments have measured the orientationally varying
optical activity when microwave radiation was scattered off
planar arrays of planar structures [15]. The planar structure,
which is constructionally favorable, automatically renders the
scatterers mirror symmetric. We point out here that the full
orientation-dependent response of such reflection symmetric
structures can be deduced from the measurement of the re-
sponse at a single orientation by encoding the symmetry of
the scaterers in a chirality tensor. As in the case of mirror
symmetric objects considered above the symmetry of planar
scatterers in fact implies a rank 2 chirality response tensor of
the form appearing in Eq.1.

To further study the applicability of this approach, we
carry out numerical calculations of scattering of microwave
radiation from thin conducting semi-circular wires. The scat-
terer considered in Figure 3(a) is symmetric under reflection
(about two perpendicular planes) and planar, rendering it sim-
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Fig. 3. Optical activity and the design of an optically active mirror symmetric array of conducting scatterers (a) The optical activity (relative

phase delay between right and left circular polarizations) of a semicircular conducting wire calculated numerically at varying angles of incidence and plotted against the exciting

wavelength (see methods). The peak response is observed at a wavelength λ/2 ∼ l, where l ∼ π/2 cm is the length of the scattering wire. The orientation of the

semicircles is prescribed by a director (axis) which joins the semicircle’s ends (dotted line), and a polar vector, p , perpendicular to the director and pointing to the midpoint

of the semicircle. The angle of incidence, α, is measured between the incident k vector and the normal to the semicircle. α is varied by rotating the semicircle about its polar

vector.The strong angular dependence of the response amplitude (inset) is predicted by [1 ] to scale as sin(2α) at all wavelengths, as observed by the collapse of the rescaled

curves. The optical activity of a single period of a helix of the same length is given for comparison (dashed curve). The small discrepancy between the rescaled curves is due

to a small fourth order tensor corrections, which can be calculated explicitly. See appendix ??. (b) To reduce linear birefringence of a single scatterer (thin black curve)

while retaining its optical activity (thin red curve) we make use of the tensorial form of the optical activity (see appendix 3 for the symmetry arguments). This allows a mirror

symmetric arrangement of six semicircles on the faces of a cube such that both their directors and polar vectors are isotropically distributed, while retaining a constructive

chiral response. The relative magnitude between the resulting optical activity (thick red curve) and the linear birefringence (thick black curve) is reduced by a factor ∼ 8. As

the array of scatterers possess the same symmetry properties as a single scatterer, an array of arrays may be constructed to further diminish linear effects. Successive iteration

will result in a hierarchial arrangement of scatterers exhibiting an exponential (in the iteration number) attenuation of linear birefringence and dichroism effects.

ilar to bent core molecules which form polar nematic phases,
and were recently shown to exhibit an isotropic chiral liquid
crystal phase [16]. Figure 3 shows the optical activity of the
scatterer computed numerically (see SI3 for details). As ob-
served in the experiments of [15], the scatterer displays both
right and left handed optical activity depending on its orienta-
tion relative to the exciting k vector. To within small contri-
butions of higher order tensors (whose orientational variation
is calculated explicitly in SI10), the optical activity obeys the
form of Equation [1]. It is therefore completely determined
by a single response curve, and displays an angular depen-
dance which scales with sin(2α) where α is the angle between
the normal to the scatterer plane and the k vector. Rescaling
by this factor yields the collapse observed in Figure 3(a).

This approach has immediate applications in metamate-
rial design, for example in the design of a purely optically ac-
tive metamaterial. Precise control of the polarization response
of a meta-material requires engineering not only the optical
activity (circular birefringence), but also the linear birefrin-
gence which is often comparable or greater in magnitude. In
the case of the semi-circular scatterer considered above the op-
tical activity and linear birefringence effects are roughly equal
in magnitude (Figure 3(b)). The desired polarization response
of a given structure may often be found at a single frequency
where contributions of multiple resonances add up favorably.
For example in [15] attenuation of linear birefringence (pure
optical activity) was achieved by examining the resonant re-
sponse of the meta-material and identifying a single frequency
in which linear birefringence is suppressed while the optical
activity is maintained. An alternative more geometric route
follows from the distinct transformation rules implied by the
pseudo-tensorial structure of the the optical activity response.
While linear birefringence is expected to change sign when the

scatterer is rotated by π/2 about the k vector direction, the
optical activity is expected to remain unchanged by this ro-
tation. To diminish the linear birefringence response in all
directions one may attempt to impose this symmetry in all
directions. However this also results in the vanishing of the
optical activity pseudo-tensor. By contrast, isotropically ori-
enting the scatterer polar vector and director independently
(as done in Figure 3), is less restrictive, and allows for a con-
structive chiral response. We implement this principle to de-
sign a spatial arrangement of six semi-circular scatterers that
attenuates the linear birefringence while retaining the optical
activity (Figure 3(b)). This arrangement constitutes a unit
cell which, similarly to its semi-circular building blocks, is
mirror symmetric making it possible to use the same princi-
ple to construct a hierarchal bulk of scatterers.

When addressed in specific orientations, the physical ob-
jects considered above have a clear handedness that can man-
ifest itself in chiral behavior, for example inducing rotation in
a fluid or rotating the polarization of optical beams. This be-
haviour is captured uniquely, in each case, by a pseudo-tensor
that relates a direction and a rotation. Additional measures
can be constructed for additional physical situations. For
example in the appendix we construct a chirality tensor de-
scribing 3D vector fields and a chirality tensor describing 1D
embedded curves. Pseudo-tensorial quantifications of specific
chiral phenomena have further been used in the context of
optics [17, 18] and liquid crystals [12]. While each physical
manifestation of handedness may require a different chirality
measure, we argue that in the general case, as they relate
directions to rotations, all measures need be pseudo-tensorial.

It is important to note that while in some handed phe-
nomena the descriptions of the handed response by a rank
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two tensor is exact , e.g. viscous (stokes) flow [13], there are
chiral phenomena for which this is not the case. In the general
case the chiral response X (n̂, r̂) relating the direction r̂ and
the rotation n̂ can be formally expanded in a series of higher
rank pseudo-tensors. For example, in SI10 we derive for the
collapse in Figure 3 the correction to the second rank tensor
structure up to rank four tensors.

Upon taking the isotropic average of chirality tensors,
which is physically equivalent to computing the average chi-
ral response of a collection of randomly oriented copies of the
object, as might occur for molecules in a solution, we recover
a pseudo-scalar (the trace) that is consistent with chiral mea-
sures based on Kelvin’s definition. However, for single objects,
or aligned collections of objects, tensorial measures predict
chiral behavior that depends on their orientation. We suggest
that such tensorial measures provide a natural extension of
Kelvin’s definition of chirality itself.

Objects to which we can intuitively assign handedness,
typically possess a well defined axis, rendering them amenable
to the application of some variant of the right hand rule.
In the tensorial sense, the object’s axis serves to single out
one component of the tensor. If the same criteria for hand-
edness are applied to perpendicular directions the remaining
components may be obtained. Mirror symmetric objects are
found to be not necessarily achiral (display no handedness),
but rather amphichiral, capable of possessing equal amounts
of right handedness and left handedness in perpendicular di-
rections.

The tensorial quantification of chirality opens new avenues
for the design of chiral objects and the manipulation of their
chiral response. This gain however does not come without a
cost; The handedness of a general object can no longer be
simply stated by a single identifier e.g. “right handed”, and
an oriented statement such as “isotropically left handed” or
“uniaxially right handed” take its place. In the most general
case one must resort to the use of tensors to fully capture the
chirality of an object.

Appendix: Chirality pseudo-tensor for embedded surfaces

In this appendix we construct the pseudo tensor χe that
measures the rotation of a surface’s normal in different di-
rections. This tensor is similar in spirit to the helicity tensor
proposed in [12, 19] in the context of nematic ordering by
chiral probes. We consider a surface r parameterized by the
coordinates xα, where α = 1, 2. These coordinates induce the
metric aαβ = ∂αr · ∂βr, and the second fundamental form

bαβ = ∂α∂βr · N̂, where N̂ is the surface’s normal. Given a
direction in space n̂ with cartesian component ni we project
it to the surface’s tangent space by

n̂‖ = (∂βr · n̂)aαβ∂αr.

Differentiating a function f defined on the surface along the
projection of n̂ reduces to

(n̂‖ · ∇)f = (∂βr · n̂)aαβ∂αf.

For an oriented derivative of a vector field (n̂∇)V we may
isolate the component which is due to a pure rotation about
a vector m̂ by the scalar product m̂ ·

(
V̂ × (n̂∇)V

)
. When-

ever this product is positive the change in the field V along
n̂ is associated with a right handed rotation about m̂. The
rotation of the normal of a surface about a vector m̂ when
displaced along the direction induced by the vector n̂ is then
given by

m̂ ·
(
N̂× ((∂βr · n̂)aαβ∂αN̂)

)
= m̂χen̂, [2]

where the chirality density, χe, defined by equation [2] can
be rewritten in component form as

χeij = ∂αrja
αβεilkN

l∂βN
k, [3]

where rj and Nk denote the cartesian components of r and N̂
and ε is the antisymmetric Levi-Civita tensor. We may elim-
inate the normal vector from the formulation with the aid of
the components of the second fundamental form bαβ and the
two dimensional Levi Civita tensor εγδ :

χeij = ∂αrj∂δria
αβbγβε

γ
δ /
√
|a|

It is easy to show that the chirality density above trans-
forms as a pseudo-tensor and is independent of the surface’s
parametrization and of the sign of the normal vector.

Appendix: Chirality pseudo-tensor for 3D director fields and
unit vector fields

Let u be a unit vector field in R3 such as the director of a
nematic or cholesteric mesophase of a liquid crystal. Inspired
by the normal rotation tensor for embedded surfaces we may
ask for every two vectors n̂ and m̂ how does the unit vector
field u rotate about the vector m̂ when displaced along the
direction n̂. In components this takes the form

niχijm
j = ni∂iu

kεjklu
lmj .

The trace of the chirality tensor defined above gives

χii = ∂iu
kεiklu

l = (∇× u) · u,
which coincides with the expression for helicity, c.f. magnetic
helicity (A ·B = A · (∇ × A)), and hydrodynamic helicity
(u · ω = u · (∇ × u)). Note that as the chirality density is
quadratic in the unit vector field u it remains unchanged un-
der the transformation u → −u and therefore also applies
to director fields. For example a simple cholesteric order in
which the director field is given by

N = (cos(pz), sin(pz), 0),

displays a uniaxial chirality density oriented along the z di-
rection

χ =




0 0 0
0 0 0
0 0 −p


 .

In general, when this chirality measure is applied to direc-
tor fields it yields not only the degree of handedness (such as
the cholesteric pitch above), but also associates the handed
phenomena with a direction.cite santangelo?

Appendix: Chirality pseudo-tensor for embedded curves

Following again the same guiding principles which resulted
in the chirality measure for embedded surfaces we come to
examine the chirality of embedded curves. We construct the
chirality density tensor χij similarly so that the contraction
mχn gives the rate of rotation of the curve’s normal vector,
N, about the direction m when displaced along the curve in
the direction and magnitude projected from n.

Let t,N and b be a curve’s tangent vector, normal vector
and Binormal vector respectively. These unit vectors satisfy
the Serret-Frenet formulas:

∂s




t
N
b


 =




0 κ 0
−κ 0 τ
0 −τ 0






t
N
b


 ,

where s is the arc-length parametrization of the curve and
κ and τ are the curves curvature and torsion. Differentiating
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r p d (χxx, χyy, χzz) T (χxx, χyy, χzz) Tp Td Tr

(L, 0, 0) x y + z (0, 1,−1) (0, 1,−1) −x y − z (−L, 0, 0)
(−L, 0, 0) −x y − z (0, 1,−1) (0, 1,−1) x y + z (L, 0, 0)

(0, L, 0) y x− z (1, 0,−1) (−1, 1, 0) −z x + y (0, 0,−L)
(0, 0,−L) −z x + y (−1, 1, 0) (1, 0,−1) −y x + z (0,−L, 0)
(0,−L, 0) −y x + z (1, 0,−1) (−1, 1, 0) z x− y (0, 0, L)

(0, 0, L) z x− y (−1, 1, 0) (1, 0,−1) y x− z (0, L, 0)

along the curve in direction projected from n gives a weighted
arc-length derivative t ·n ∂s. The chirality density tensor may
be simplified by the Serret-Frenet equations to read

χij = tiεjlkN
l∂sN

k = titjτ + tibjκ. [4]

The trace of the chirality density gives the local torsion,
χii = τ . For locally planar curves where τ = 0 this gives
a traceless tensor, as expected from the local mirror symme-
try of such curves. In the general case, however, the measure
is not traceless. For example when considering a helicoid ori-
ented along the z axis of pitch p,

r = (R cos
( s√

R2 + p2

)
, R sin

( s√
R2 + p2

)
,

p s√
R2 + p2

) ,

then for an integer number of windings, M , the integrated
chirality tensor is uniaxial and oriented along the axis of the
helicoid:

X =




0 0 0
0 0 0
0 0 2πM p√

R2+p2


 =




0 0 0
0 0 0
0 0 ∆Z


 ,

where ∆Z is the height of the helicoid.

Appendix: Optically active, isotropic and mirror symmetric
collection of semicircular wire segments

We describe the orientation of a semicircular scatterer in
space using a vector p, pointing from the center of the semi-
circle to the midpoint on the wire segment, and a director

d (non-oriented vector, i.e. d = −d), which connects the
segment’s endpoints. If the scatterers are isotropically ori-
ented then both optical activity and linear birefringence van-
ish. However, one can place six scatterers on the faces of a
cube such that their polar vectors, p, are isotropically oriented
and their directors , d, are also isotropically oriented, but such
that their chirality tensors add constructively. Moreover this
arrangement can be made to be symmetric under reflection,
i.e. there exists an improper rotation, T ,(a combination of
an inversion and a rotation) which maps the arrangement of
scatterers to itself.

The above arrangement is possible due to the difference in
transformation rules between the different quantities; whereas
p and r transform as vectors (p′i = Λjipj ), χ transforms as
a rank two pseudo-tensor (χ′ij = −Λni λ

m
j χmn). The trans-

formation T , mapping the scatterers arrangement to itself is
given explicitly by x → −x, y → −z and z → y, and its
transformation gradient given by

Λ =



−1 0 0
0 0 1
0 −1 0


 .

With the aid of this mapping and its transformation gradient
we list in table 3. the positions and orientations of the semi-
circular scatterers, alongside their positions and orientations
after the application of the transformation T and show that
their chirality tensors add constructively.
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Materials and Methods
SI1. Construction of the elastic bi-layer. Two sheets of a super soft silicone

rubber (30a Durometer) of thickness 1/32” were strained uniaxially by 25 percent

and their edges temporarily fixed to rigid plates. A thin layer of silicone adhesive

(Dow Corning 732) was applied to both sheets. The sheets were then pressed against

each other while maintaining the uniaxial strain axes perpendicular. The silicone was

allowed to cure for a week. The glued bi-layer shows a thickness of 2mm with a

spatial variation of ±20% when released from the tensional frame.

SI2. 3D printed helicoid segments in an airflow. Half period helicoids of width

2 cm, length π cm and thickness 0.2 cm constrained by 0.4 cm diameter and

11 cm long cylindrical axes were printed using a 3D printer (Objet Connex350
TM

).

The constraint axes passed through the helicoid’s center and were directed in per-

pendicular directions, along the helicoids length and tangent to the helicoid at its

center.

SI3. Optical activity simulations. We used a commercial method of moments

(MoM) solver, HFSS-IE, to solve the near field scattering off a conducting solid

(copper from the HFSS built in material library). The scatterer was centered on the

origin which was chosen as the zero phase of the incident plane wave excitation. The

exciting wave’s wavelength was varied between 10mm and 150mm revealing

a single resonance approximately at the scatterer’s length. The semicircular ring of

figure 3 is one half of a torus of minor radius 0.05mm and a major radius of

5.05mm, the helical segment is of the same wire thickness (0.05mm), and a

radius and pitch r0 = p ≈ 2.4mm resulting in the same overall wire length. A

near field measurement at a distance of 2000mm from the origin of the scattered

field was added to the unattenuated incident plane wave. Two linearly polarized in-

cident wave calculations were used to obtain the different components of the Jones

matrix. The linear and circular components of the birefringence were extracted under

the assumption of a homogenous media as elaborated in appendix .

SI4. Geometry of the elastic bi-layer
Following [11] we identify the intrinsic geometry resulting from
the construction of the bi-layer with a uniform first and second
reference fundamental forms:

a =

(
1 0
0 1

)
, b =

(
0 k
k 0

)
,

where principal curvature directions coincide with the tension
directions in each of the layers. The magnitude of the ref-

erence curvature may be calculated via k = 1
δz
α2−1
α2+1

where

α is the uniaxial elongation factor with respect to the un-
strained state. In our system α = 1.25 and δz ≈ 1.4mm is
measured between the mid-surfaces of top and bottom layers
which yields k ≈ 0.15 1

mm
.

SI5. The most general form of a Mirror symmetric

pseudo-tensor
Theorem: The second rank chirality pseudo-tensor of mirror
symmetric bodies is symmetric traceless and of vanishing de-
terminant.
Proof: Every rank two pseudo-tensor χ may be decomposed
into a symmetric part, S, and an anti-symmetric part, A. We
assume that there exists an improper rotation which leaves
χ unaltered. We rewrite this improper rotation as an inver-
sion (all coordinates changes sign), followed by an unknown,

proper rotation O. Thus we may write OTχO = −χ for some
proper rotation O. We may rewrite this equality as

OTSO + S = −OTAO −A.

As the left hand side above is symmetric, and the right hand
side is anti-symmetric, each of them has to vanish indepen-
dently. By OTSO = −S we obtain that S has to have vanish-
ing determinant and trace. It therefore can be rotated to the
form

S = c




1 0 0
0 −1 0
0 0 0


 .

The proper rotation O may now be easily determined to be a
rotation by π/2 about the z axis. When S is diagonalized, we
assume A has the form

A =




0 a b
−a 0 c
−b −c 0


 ,

which upon application of the rotation O gives a = b = c =
−b = 0.

S6. Resolving the paradox of chiral connectedness
Chiral connectedness, the ability to continuously deform an
object into its mirror image without passing through a config-
uration which is mirror symmetric stands at the heart of the
inability to quantify chirality. The tensorial generalization to
the quantification of handedness resolves the seeming contra-
diction generated by chiral connectedness in three different
levels. First, a higher dimensional object (such as a tensor)
can change sign without passing through zero as can be seen
in Figure 4 below. This notion, in the context of vectors, was
discussed by Weinberg and Mislow soon after the discovery
of chiral connectedness yet was discarded claiming that vec-
tors do not allow simple ordering thus cannot form adequate
chirality measures [20]. Second, the reason to claim that the
chirality tensor of a mirror symmetric object must vanish is
because for pseudo-scalars and scalar measures if χ = −χ then
χ = 0 necessarily. As displayed in the previous section this
does not hold for pseudo-tensors. Thus, formally, the non-
vanishing chirality tensors of mirror symmetric bodies does
not stand in contradiction with Lord Kelvin’s definition.
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Third, the oriented quantification of chirality proposed
here does not take the lack of mirror symmetry to be the
source of handedness but defines handedness as the relation
between directions and rotations. As such even non-mirror
symmetric objects are allowed to display no handedness with
respect to a specific given measure.

Fig. 4. Chiral-connected path between a right handed helix and its
left handed mirror image. The first two isotropic invariants of the chirality ten-

sor (calculated explicitly for the curve using the formula X =
∫
(κtitj+τtibj)ds

derived at the appendix of the main text) plotted against a parameter describing the

continuous deformation of the right handed helix (orange) to the left handed helix

(green). The first isotropic invariant, χii, given by the green and orange line coin-

cides with the scalar definition of chirality indices. This measure reads zero when the

right handed portion of the helix and the left handed portion are the same height.

This configuration is, however, not symmetric under reflections as the right handed

potion is composed of two windings whereas the left handed portion is composed of

eight windings. The second invariant, χijχij (divided by 10 for graphical purposes),

is plotted in blue and barely changes throughout the transformation. In particular it

remains bound away from zero.

SI7. Chirality pseudo-tensor for embedded surfaces
Theorem: Let S be a smooth surface with no additional struc-
ture and let X =

∫ ∫
χdA be a rank two chirality pseudoten-

sor originating from a local rank two chirality density pseudo-
tensor then X is traceless and symmetric.
Proof: Locally, the structure of a smooth surface is mirror
symmetric with two mirror symmetry planes spanned by the
normal to the plane and each of the directions of principal cur-
vatures. Thus the local chirality density χ must be symmetric,
and traceless. It follows that X is also symmetric and trace-
less as a linear sum of such tensors. This renders the surfaces
which are amenable to such a description just as right handed
as they are left handed regardless of their seeming preferred
handedness. This non-trivial result holds for 2D surfaces em-
bedded in 3D, and does not carry over for 3D fields or 1D
embedded curves as exemplified in the measures presented in
the appendix to the main text.

SI8. Higher rank chirality pseudotensors
The chirality quantification of the examples considered in the
main text are dominated by rank two pseudo-tensors. In some
cases such a second order quantification is exact. For example
in viscous flows, due to the linearity of the the governing equa-

tions, there is a general linear relation between the velocity
U and rotation Ω of a body in an otherwise quiescent viscous
fluid and the force F and couple G applied to it through a
resistance matrix [13]:

(
F
G

)
=

(
A L
LT B

)(
U
Ω

)
.

The off diagonal block L relating a given rotation to a lin-
ear force, as well as the combination B−1LT which relates
the rotation due to translation of a torque free body are both
measures of chirality which are captured exactly by a rank
two tensor.

The general case of chirality admits more complicated ori-
entational structure. In such cases the chirality function which
relates the direction r̂ with the rotation n̂, χ(r̂, n̂), may be ex-
panded in a formal tensor series

χ(n̂, r̂) = riχ1,1
ij nj + rirjχ

2,1
ijknk + rirjrkχ

3,1
ijkmnm

+ riχ
1,3
ijkmnjnknm + ...

The higher order tensorial corrections may be calculated di-
rectly as done below (in S.10). It is important to note, how-
ever, that in some cases symmetry sets the second rank tensor
to zero and the dominant behavior is governed by a higher
rank tensor. This is the case of the four cup anemometer
which is designed to spin about the z-axis in the same fashion
for both wind from the x direction and from the −x direc-
tion. The lowest order pseudotensor which is capable of such
a response is the rank three χ2,1.

SI9. Optical activity extraction
Monochromatic scattering is described by a Jones matrix re-
lating the incident and scattered plane wave components:

(
Eoutx

Eouty

)
=

(
Jxx Jxy
Jyx Jyy

)(
Einx
Einy

)

Following Jones [19], we identify the four independent complex
entries of the Jones matrix, J , with the eight independent po-
larization transformations: i. A global phase retardation and
amplitude attenuation, ii. Circular dichroism and circular
birefringence, iii. Linear birefringence and linear dichroism
in the (x, y) linear polarizations, and iv. Linear birefringence
and linear dichroism in the (x+ y, x− y) linear polarizations.
As the different Jones matrices associated with the different
polarization phenomena do not commute, a decomposition of
a Jones matrix to a product of such ”pure” components will
not be unique, and the values associated with the strength of
each phenomena will depend on the order of the elements in
the product. If, however, we consider the generators of the
polarization effects, then to linear order, the result does not
depend on the order in which they are summed. Conceptually
this amounts to decomposing the medium to infinitesimal lam-
inae each displaying one of the polarization effects. As their
thickness is infinitesimal the order in which these laminae are
placed one after the other does not change the result. This
assumption of a homogenous medium results in the following
interpretation of the Jones matrix components.

J = e−iη/2
(

cos(T
2

)− iL
T

sin(T
2

) C−iL̃
T

sin(T
2

)

−C+iL̃
T

sin(T
2

) cos(T
2

) + iL
T

sin(T
2

)

)
,

where T =
√
L2 + L̃2 + C2, L = LB0,90 − i LD0,90 measures

the linear birefringence and dichroism of the linear polariza-
tion along the x and y axes, L̃ = LB45,−45 − i LD45,−45 mea-
sures the linear birefringence and dichroism of the linear po-
larization along the x+y and x−y directions, C = CB−i CD
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measures the circular birefringence and dichroism and η ac-
counts for the isotropic amplitude attenuation and phase re-
tardation [19, 21]. For a weak scatterer the extraction of the
optical activity form the Jones matrix, J , is unique.

SI10. Additional optical activity calculations for a sin-

gle scatterer
Tensorial structure along the perpendicular direction

Fig. 5. The tensorial structure of the optical activity response The

semicircular scatterer of figure 3 of the main text is oriented in the direction of max-

imal response (α = 45o) and rotated about its director (the line connecting its

endpoints) from θ = −30o to θ = 60o at 10o intervals. The optical activity

angular dependence (inset) is expected to follow a simple projection rule and display

a cos(θ)2 dependence as observed by the collapse of the curves.

Rank four chirality pseudo-tensor corrections

We compute the corrections up to rank 4 to the optical activity
of the single scatterer considered in figure 3 of the main text.
As in the case of the rank 2 tensor for a mirror symmetric ob-
ject , symmetries serve to reduce the number of independent
entries.

For the rank three tensor we obtain that the non vanishing
components are χ2,1

{123} and χ2,1
{132} where {123} denote all pos-

sible cyclic index permutations, i.e ((123), (231), (312)). For
the rank four tensor the only non vanishing components are:

χ3,1
{1113}, χ3,1

{3331}, χ3,1
{2123}, χ3,1

{2231}, χ3,1
{2213}.

We note that for optical activity calculations, where the k vec-
tor serves as both the direction of propagation and the axis
of rotation, χ1,3 and χ3,1 relate to the same tensor thus only
one of them needs to be prescribed. In particular, when con-
tracted with a single vector k = (cos(α), 0, sin(α)), we obtain

kikjχ1,1
ij = cos(α) sin(α)(χ0

13 + χ0
31),

kikjklχ2,1
ijl = 0,

kikjklknχ3,1
ijln = cos(α) sin(α)×

(
cos2(α)(χ3,1

1333 + χ3,1
3133 + χ3,1

3313 + χ3,1
3331)

+ sin2(α)(χ3,1
3111 + χ3,1

1311 + χ3,1
1131 + χ3,1

1113)
)

= cos(α) sin(α)(A1 cos(2α) +A2),
[1]

where A1 and A2 are independent of α. Subtracting the curves
rescaled by cos(α) sin(α) observed in Figure 3 in the main text
from the curve of maximal response results in the curves ob-
served below in Figure 6 which scale as cos(2α). We note that
this collapse also displays a 5 percent variation which may be
attributed to even higher order corrections.

Fig. 6. Rank four tensor corrections to the optical activity The dif-

ference between the collapsed curves in figure 3 of the main text is observed mostly

around the resonant peak, and is about an order of magnitude smaller than the peak

value (inset). Further calculation shows that the symmetry of the problem allows no

non-trivial rank three pseudotensors, and restricts the form of the rank four tensors

to display a cos(2α) angular dependence as observed by the collapse of the rescaled

curves.

SI11. Optical activity in continuous media: The elec-

tro gyration tensor
Optical activity in weakly dispersive continuous media can be
described by the electro-gyration tensor, g, appearing in the
spatial variation of the dielectric permittivity tensor

εij = ε0ij + i
c

ω
εijkgklkl,

where kl are the components of the wave vector, εijk is the
antisymmetric Levi-Civita pseudo-tensor and both ε0 and g
may depend on frequency. The right hand side of the equation
above may be interpreted as an expansion in k of the dielectric
tensor [18]. A natural (and common) path is to identify the
eigenmodes of the above dispersion relation and their corre-
sponding refractive indices. For a monochromatic plane wave
the combination of Maxwell’s equations

∇× (∇×E) = − 1

c2
D̈ [2]

may be recast in the following form

n2Ei − ni(njEj) = Di = εijEj ,

where n = ck/ω. The desired plane wave eigenmodes form
the null space of

n2δij − ninj − εij = n2δij − ninj − ε0ij − iεijkgklnl.
For an isotropic medium ε0ij = ε0δij = n2

0δij . Considering
a plane wave propagating along the z direction we obtain to
leading order in g

n2
z = n2

0 ± gzz.
The polarization which correspond to these values are:

Ey = ∓iEx,
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which correspond to circular polarizations.
While the above analysis is very powerful, a linearly po-

larized plane wave ansatz yields a clearer interpretation of the
gyration tensor g. Let us consider a plane wave solution of
the form

E = eiωtP(k0 · r)eik0·r, [3]

where k0 = n0ω/cẑ =
√
ε0ω/cẑ. Substituting this form into

[2] we obtain to leading order in g the propagation equation
for the x, y polarization vector

P′(k0 · r) = −igzz 1

2n2
0

σyP(k0 · r)

where P =

(
Px
Py

)
, and σy =

(
0 −i
i 0

)
is the second Pauli

matrix. We may therefore interpret in the general case the

component k̂T gk̂ as the scalar multiplier of the generator of
linear polarization rotation in the direction of propagation.
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