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Realization of a topological phase transition in a gyroscopic lattice
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Topological metamaterials exhibit unusual behaviors at their boundaries, such as unidirectional chiral waves,
that are protected by a topological feature of their band structures. The ability to tune such a material through
a topological phase transition in real time could enable the use of protected waves for information storage and
readout. Here we dynamically tune through a topological phase transition by breaking inversion symmetry in
a metamaterial composed of interacting gyroscopes. Through the transition, we track the divergence of the
edge modes’ localization length and the change in Chern number characterizing the topology of the material’s
band structure. This Rapid Communication provides a new axis with which to tune the response of mechanical
topological metamaterials.
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A central challenge in physics is understanding and con-
trolling the transport of energy and information. Topological
materials have proven an exceptional tool for this purpose since
topological excitations pass around impurities and defects
and are immune to backscattering at sharp corners [1,2].
Furthermore, topological edge modes are robust against weak
disorder, such as variations in the pinning energy of each lattice
site, in contrast to typical edge waves [3,4].

Mechanical topological insulators represent a rapidly grow-
ing class of materials with topologically nontrivial phononic
band structures [2,5]. A signature of topological protection is
the existence of finite frequency waves around the perimeter
of such a material in a direction determined by the band
topology [4,6–9]. These edge waves are immune to scattering
either into the bulk or in the reverse direction along the edge.
Since the physics of topological protection is in many cases
agnostic to whether the material is built from classical or
quantum components, classical systems in which the individual
components are readily accessible offer an appealing arena in
which to explore this physics. At the same time, harnessing
topological wave behavior for applications motivates real-time
control of chiral edge waves, including the ability to tune
through a topological phase transition as has recently been
accomplished in quantum materials [10,11]. Here we present
a method for reversibly passing through a topological phase
transition in a mechanical metamaterial, which allows us to
tune chiral edge modes on and off in real time and see the
effects of the transition.

Our system consists of rapidly spinning gyroscopes hanging
from a plate (Fig. 1 ). If displaced from equilibrium, a single
gyroscope will precess: Its tip moves in a circular orbit about
the equilibrium position as a result of the torques from gravity
and the spring suspension. To induce repulsive interactions
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between gyroscopes, we place a magnet in each gyroscope
with the dipole moments aligned.

A honeycomb lattice of such gyroscopes behaves as a Chern
insulator, exhibiting robust chiral edge waves that pass around
corners uninhibited. The phononic spectrum has a band gap,
and shaking a boundary site at a frequency in the gap generates
a wave packet that travels clockwise along the edge. Figure 1(b)
and Supplemental Material video 1 show such a wave packet
as seen from below [12].

The origin of these chiral edge modes is broken time-
reversal symmetry, which arises from a combination of lattice
structure and spinning components [7]. As in Refs. [7,9], an
effective time-reversal operation both reverses time (t → −t)
and reflects one component of each gyroscope’s displacement
(ψ → ψ∗, where ψ = δx + i δy is the displacement of a
gyroscope). Breaking effective time-reversal symmetry opens
a gap at the Dirac points of the phononic dispersion in a way
that endows each band with a nonzero Chern number [13].

An alternative mechanism for opening a gap, however, is to
make sites in the unit cell inequivalent [10,13]. This process
breaks inversion symmetry in the honeycomb lattice: The
system is no longer invariant under exchange of the two sites in
the unit cell. A gap opened by this mechanism is topologically
trivial and does not lead to protected edge modes.

If both symmetries are broken, then their relative strength
should determine whether the system is topological or trivial,
enabling us to tune the system through a phase transition. This
would be analogous to a known transition in the Haldane
model [13] in which broken inversion symmetry competes
with the broken time-reversal symmetry. This mechanism for
passing through such a topological transition has been used in
systems of cold atoms in driven optical lattices [10,11]. Here,
we explore the analogous behavior in a topological mechanical
metamaterial.

A simple way to break inversion symmetry is to detune
the precession frequencies of neighboring gyroscopes pairwise
throughout the system. To do so, we apply a local magnetic
field at each site by introducing a coil beneath each gyroscope.
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FIG. 1. Modulating the magnetic field at each lattice site tunes
a metamaterial of gyroscopes suspended from a plate. (a) A magnet
embedded in each gyroscope provides an interaction with nearby gy-
roscopes and with a current-carrying coil. (b) A honeycomb network
of interacting gyroscopes supports topologically protected chiral edge
waves. Overlaid circles depict the gyroscopes’ displacements, colored
by the phase of the displacement with respect to the equilibrium
positions [see color wheel in the bottom right of panel (b)]. (c) The
magnetic field from a coil placed below modulates the precession
frequency at each site, raising (the orange circles) or lowering the
frequency (the blue squares) depending on the orientation of the
current through the coil. (d) Modulating the precession frequencies
in an alternating pattern breaks inversion symmetry of the lattice.

For small displacements, the coil’s magnetic field provides
a force which is parallel or antiparallel to gravity, raising
or lowering its precession frequency: �p → �A,B

p = (1 ±
�AB)�0

p [Fig. 1(c)]. We then assemble a honeycomb lattice
of gyroscopes with alternating coil orientations at each site
[Fig. 1(d)]. To reduce noise in the precession frequencies,
we synchronize all spinning speeds by sending pulse-width-
modulated signals to the motors [12].

We excite a wave packet in this system again by shak-
ing a site at the boundary and simultaneously ramp up
the current through the coils. As we pass through a criti-
cal current—corresponding to a critical inversion symmetry-
breaking strength—the excitation delocalizes: The coherent
topologically protected edge mode transforms into bulk modes,
suggesting the presence of a topological phase transition (see
bottom panel in Fig. 2 and Supplemental Material video 2
[12]). Although the gradual ramp (22�0

p) in Fig. 2 allows visual
confirmation of the edge mode delocalizing, more rapid ramps
likewise halt the edge mode. We note that ramps of less than
∼8�0

p cause bulk disturbance from the impulsive magnetic
torques on gyroscopes that are canted during the ramp.

To study the transition in more detail, we compute the
band structure of magnetic gyroscopes with varying inversion
symmetry breaking. As the precession frequency splitting is
increased, the band gap closes and reopens [Fig. 3(a)]. Beyond
the critical value, no edge states connect the two bands: The
system is a trivial insulator.

Measuring the localization length of edge states in our
experiment enables a direct comparison against our model. As
the gap narrows, the localization length of the most confined
edge state broadens until it is comparable to the system size.
By shaking the system at a frequency that slowly sweeps
through the gap and tracking the gyroscopes’ displacements,
we obtain the eigenstates of the system (the eigenvectors of the
Fourier transform). Figures 3(b) and 3(c) show the results of
this measurement, considering only the most localized states
near the center of the gap. As the localization length of the
most localized state [the blue curve in Fig. 3(c)] grows to the
scale of the system size W , the bands touch and reopen without
chiral edge modes. This feature confirms the likely presence
of a topological phase transition.

To predict the topological phase transition theoretically, we
compute the Chern number of the system’s bands, which is
encoded in the spectrum of the dynamical matrix. To linear
order, the displacement of a fast-spinning gyroscope ψ ≡ δx +
i δy obeys Newton’s second law as

i
dψp

dt
= �pψ + 1

2

∑
q

[(�+
ppψp + �+

pqψq)

+ e2iθpq (�−
ppψ∗

p + �−
pqψ

∗
q )], (1)

where the sum is over nearby gyroscopes, �±
pq ≡ − �2

Iω
(∂Fp‖/

∂xq‖ ± ∂Fp⊥/∂xq⊥) is the characteristic interaction frequency
between gyroscopes p and q, �p ≡ (mg + F suspension +
F coil

z )�/Iω = (1 ± �AB)�0
p is the precession frequency in the

absence of other gyroscopes, and θpq is the angle of the bond
connecting gyroscope p to gyroscope q, taken with respect
to a fixed global axis. The interaction strengths �±

pq scale
with the quantity �k ≡ �2km/Iω, where km is the effective
spring constant for the magnetic interaction, and �±

pq’s depend
nonlinearly on the lattice spacing. As Eq. (1) resembles the
Schrödinger equation, we write the equation of motion for the
entire system as

i
d �ψ
dt

= D �ψ. (2)

The precession frequency plays the role of the on-site potential
so that the coil’s magnetic field detunes the diagonal terms of
the dynamical matrix D.

A nonzero Chern number signals the existence of topo-
logically protected chiral edge modes. Computing the Chern
number of the magnetic system as

Cjdx ∧ dy = i

2π

∫
d2k Tr(dPj ∧ PjdPj ), (3)

where the projector Pj ≡ |uj 〉〈uj | maps states in band j to
themselves and maps other states to zero, we see the Chern
number of the lower band change from 1 to 0 when the
localization length reaches the system size ξ ∼ W [Fig. 3(c)].
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FIG. 2. Dynamically ramping up the inversion symmetry breaking quenches a chiral wave. (Top) For �AB = 0, exciting a mode in the gap
by shaking at a frequency in the center of the band gap yields a robust chiral edge wave. (Bottom) The same wave packet is created in the
lower panel, but here the inversion symmetry breaking increases over the first 14 s of the experiment. As �AB passes through the critical value,
the mode delocalizes, and no coherent packet persists in the trivial phase. The system is viewed from below through the coils (white circles).
Filled colored circles overlaying each image represent the displacement of the gyroscopes. Each colored circle’s radius is proportional to the
magnitude of the displacement, while its color represents the displacement’s phase (see color wheel).

Our approach enables us to tune through a phase transi-
tion dynamically by pitting inversion symmetry against time-
reversal symmetry breaking, adding a new axis of versatility
for topological mechanical metamaterials. We illustrate this by
computing a larger phase diagram for the gyroscopic system
in which time-reversal symmetry breaking and inversion sym-
metry breaking are both varied. To explore their interplay, we
combine the transition observed here with another topological
phase transition discussed in Ref. [7], which exploits the
dependence of the band topology on the geometry of the
lattice. By globally deforming the honeycomb lattice through
a bricklayer lattice, the Chern number of the lower band
transitions from 1 to 0 to −1 (Fig. 4). The transition occurs
when bond angles in the network are precisely multiples of
π/2 at which point effective time-reversal symmetry is restored
and the gap closes. Continuing the deformation into a bow tie
configuration inverts the sign of the symmetry-breaking term,
reopening the gap, but each band’s Chern number flips sign.

In Fig. 4, we allow inversion symmetry breaking and lattice
deformation to compete, giving rise to systems with clockwise
edge modes (red), counterclockwise edge modes (blue), and
no chiral edge modes (white). When the time-reversal sym-
metry breaking is weakened (δ → π ), the required |�AB | to

drive the system to a trivial insulator diminishes. This phase
diagram highlights the similarity of the gyroscopic system to
the Haldane model [13]. This can be understood by taking
the limit in which the precession frequency is much faster
than the interaction strength (�0

p � �k): The spring-coupled
gyroscope system maps to the Haldane model [7].

The phase diagram for magnetic interactions, although
similar, possesses an area of a trivial insulator between the
topologically nontrivial phases. Unlike springlike potentials,
magnets exhibit an antirestoring response to perpendicular
displacements (�+ = �−). These interactions can introduce
an indirect band gap that closes before the lattice reaches a
bricklayer geometry [12]. The result is a trivial insulator phase
of finite extent separating the phases with ν = +1 and ν = −1
for the lower band (right panel in Fig. 4). The extent of the
separation depends on the interaction strength �±/�0

p and the
spacing between gyroscopes relative to their pendulum length.

In conclusion, we have demonstrated a nondestructive
mechanism for dynamically tuning a mechanical Chern insu-
lator through a topological phase transition. We characterized
the transition by measuring the delocalization of edge modes
in a gap and the corresponding change in Chern number to
zero at the transition, and we established this one-dimensional
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FIG. 3. Inversion symmetry breaking drives the topological tran-
sition to a trivial insulator with a divergence in localization length
at the transition. (a) Band structure for a periodic supercell shows
the gap close and reopen; increasing the frequency splitting �AB

eliminates the chiral edge modes localized at the top (purple) and
bottom (light green) of the supercell. (b) Experimental measurement
of the edge states near the center of the gap shows the divergence
of the localization length. At large �AB , exciting the system in the
trivial band gap leads to a weak localized response. (c) When the
most localized state (connected blue dots) becomes extended such
that ξ ∼ W (the black dashed line), where W is the distance from
the center to the system’s boundary, the Chern number of the lower
band (the orange line) changes from +1 to zero. The orange band
represents uncertainty in the transition point arising from uncertainty
in experimental parameters. All states in the range of [0.9�0

p,1.1�0
p]

are included in the blue band, and a is the lattice spacing.

transition’s context within a two-dimensional phase space for
mechanical gyroscopic Chern insulators. This design enables a
mechanism for constructing topological gates able to direct the
flow of energy in chiral modes, offering potential applications
in classical information storage and readout [14].

FIG. 4. Our experiment is one slice of a larger phase diagram.
Tuning the lattice geometry to a bricklayer lattice restores effective
time-reversal symmetry, and continuing to deform into a bow tie
inverts the sign of the symmetry-breaking term. The left panel shows
the topological phase diagram for the case of spring couplings (no
restoring force in the transverse direction to first order) with �0

p =
�+ = �−. The right panel shows the Chern number of the lower
band for the case of magnetic interactions with �k/�0

p = 0.67 as
in the experiments. The two are similar, although the topologically
nontrivial phases (red and blue) do not meet at a point in the case of
magnetic interactions.

Note added in proof. We would like to point out a concurrent
study of a different topological phase transition in a classical
system: a photonic metamaterial in which time is replaced by
propagation through a cleverly designed waveguide structure
[15].
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