Helicity in superfluids: Existence and the classical limit

Hridesh Kedia,1,,* Dustin Kleckner,1,† Martin W. Scheeler,1 and William T. M. Irvine2,‡
1James Franck Institute and Department of Physics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
2James Franck Institute, Enrico Fermi Institute and Department of Physics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA

(Received 25 April 2017; published 18 October 2018)

In addition to mass, energy, and momentum, classical dissipationless flows conserve helicity, a measure of the topology of the flow. Helicity has far-reaching consequences for classical flows from Newtonian fluids to plasmas. Since superfluids flow without dissipation, a fundamental question is whether such a conserved quantity exists for superfluid flows. We address the existence of a “superfluid helicity” using an analytical approach based on the symmetry underlying classical helicity conservation: the particle relabeling symmetry. Furthermore, we use numerical simulations to study whether bundles of superfluid vortices which approximate the structure of a classical vortex recover the conservation of classical helicity and we find dynamics consistent with classical vortices in a viscous fluid.

DOI: 10.1103/PhysRevFluids.3.104702

I. INTRODUCTION

Our understanding of fluid flow is built on fundamental conservation laws such as the conservation of mass, energy, and momentum [1]. In particular, these give rise to the Euler equations of dissipationless fluid mechanics, which capture many fluid phenomena including vortex dynamics [2] and instabilities [3] and play a key role in the study of turbulence [4,5].

Hidden within the Euler equations for isentropic flows is a less familiar conservation law [6–8]: conservation of helicity $H_{\text{Euler}} = \int d^3x \mathbf{u} \cdot \mathbf{\omega}$, $\mathbf{\omega} = \nabla \times \mathbf{u}$. As a measure of the average linking of vortex lines [7,8], helicity conservation places a topological constraint on the dynamics of classical inviscid isentropic flows. Helicity has further yielded new insights into viscous flows, from vortex reconnection events [9,10] to the study of coherent dynamical structures generated by turbulent flow [11–13].

Superfluids display striking similarities with classical fluids in their vortex dynamics [14,15] and turbulence statistics [16–18]. Since superfluids flow without dissipation, it is natural to ask whether a conserved quantity analogous to helicity also exists in superfluid flows. Natural candidates for a “superfluid helicity” are (i) the expression for the classical helicity H_{Euler} which is not conserved in superfluid flows [9,19] and (ii) a Seifert-framing-based helicity which vanishes identically.
FIG. 1. A threefold helical superfluid vortex and a section of its phase isosurface clipped at a fixed distance from the vortex. The volume occupied by the superfluid naturally separates into such surfaces of constant phase.

[9,20–22]. However, it has been challenging to establish their connection to the fundamental notion of conservation. It has thus remained unclear whether additional conserved quantities akin to helicity and circulation exist in superfluids and how a “classical limit” of superfluid helicity might behave.

In this paper, we use an analytical approach based on the particle relabeling symmetry, which underlies helicity conservation and Kelvin’s circulation theorem in classical inviscid fluids, to address the question of superfluid helicity. We find that the conserved quantities associated with the particle relabeling symmetry in superfluids vanish identically, yielding only trivial conservation laws instead of the conservation of helicity and circulation. This raises the question of a “classical limit” in which a relevant notion of helicity is recovered which has dynamics akin to helicity in classical flows. To answer this question, we study bundles of superfluid vortices that mimic the structure of classical vortices and are robust long-lived structures [23,24]. Our numerical simulations show that the centerline helicity [9] of superfluid vortex bundles behaves akin to helicity in classical viscous flows.

II. SUPERFLUID VORTEX DYNAMICS AND CONSEQUENCES FOR HELICITY

To simplify our discussion, we consider superfluids at zero temperature, i.e., weakly interacting Bose condensates described by a complex order parameter \(\psi \) (“wave function of the condensate” [25]) obeying the Gross-Pitaevskii equation [26,27]:

\[
i\hbar \frac{\partial}{\partial t} \psi = -\frac{\hbar^2}{2m} \nabla^2 \psi + g |\psi|^2 \psi,
\]

where the constant \(g \) captures the interatomic interaction strength [28]. The Gross-Pitaevskii equation (GPE) captures qualitatively important features of superfluid behavior at low temperatures [14,29], including the dynamics of vortices—lines where the complex order parameter \(\psi \) vanishes and around which its phase winds around by an integer multiple of \(2\pi \) (see Fig. 1).

Interestingly, the Gross-Pitaevskii equation can be mapped to an Euler flow in the region excluding vortices via the Madelung transformation [30,31]: \(\psi = \sqrt{\rho/m} \exp(i\phi/\hbar) \), by rewriting Eq. (1) in terms of the fluid density \(\rho = m|\psi|^2 \) and velocity \(u = \nabla \phi/m \). The mapping between superfluid flow and Euler flow makes it tempting to conclude that classical helicity is conserved in superfluids just as in Euler flows. However, numerical simulations show that the expression for helicity in Euler flows: \(H_{\text{Euler}} = \int d^3x \, u \cdot \omega \), \(\omega = \nabla \times u \) is not conserved in superfluid flows [9,19,21]. \(H_{\text{Euler}} \) evaluated for singular vortex lines has two contributions: (a) the Gauss linking integral for pairs of vortex lines, giving the linking between them, and (b) the Gauss linking integral evaluated for each vortex line and itself giving its writhe [32]. Since the writhe of a vortex line is not conserved [9] even in the absence of reconnections, \(H_{\text{Euler}} \) is not conserved for superfluid flows.

This disparity between Euler flows and superfluid flows stems from two key differences: (i) Superfluids have singular vorticity distributions, concentrated on lines of singular phase (see Fig. 1), and quantized circulation \(\Gamma = \oint u \cdot dl = n \hbar/m \), unlike classical vortices which have smooth
vorticity distributions. (ii) Vortex lines in a superfluid can reconnect [33–35], in contrast to vortex lines in Euler flows which can never cross.

The singular nature of superfluid vortices and the presence of vortex reconnections make it challenging to carry over the derivation of helicity conservation [8] in Euler flows and suggest that a fundamentally different approach is required to address the question of a superfluid helicity. Previous approaches [21,36,37] to seeking a conserved quantity analogous to helicity in superfluids have focused on adapting the expression for classical helicity \(C \) to superfluids, as opposed to starting from a symmetry and seeking conservation laws.

We now begin with the fundamental symmetry that gives rise to helicity conservation in Euler flows via Noether’s theorem and carry this over to superfluids.

III. HELICITY AS A NOETHER CHARGE FOR EULER FLUIDS AND SUPERFLUIDS

The conservation of helicity in Euler flows [38–47] is a special conservation law, arising from the particle relabeling symmetry via Noether’s second\(^3\) theorem [42,50]. The particle relabeling symmetry arises from an equivalence between the Lagrangian description of a flow in terms of the positions \(\mathbf{x}(\mathbf{a}, \tau) \) and velocities \(\partial_t \mathbf{x}(\mathbf{a}, \tau) \) of fluid particles labeled by \(\mathbf{a} \) at time \(\tau \), and the Eulerian description of a flow in terms of the velocity \(\mathbf{u}(\mathbf{x}, t) \) and density \(\rho(\mathbf{x}, t) \) at each point in space. The action for Euler flow is [40,43,45]

\[
S_{\text{Euler}} = \int d\tau d^3a \left\{ \frac{1}{2} [\partial_t \mathbf{x}(\mathbf{a}, \tau)]^2 - E(\rho) \right\},
\]

where \(\tau \) is time, \(d^3a = \rho \ d^3x \) is the mass of a fluid element, \(\partial_t \mathbf{x}(\mathbf{a}, \tau) \) is the velocity, \(E(\rho(\mathbf{a})) \) is the internal energy density, and the co-ordinate frames \((\mathbf{a}, \tau) \) and \((\mathbf{x}, t) \) are related as follows: \(\partial_t = \partial_s + \mathbf{u} \cdot \nabla \). Note that the Euler flow action in Eq. (2) depends only on the flow velocity \(\mathbf{u} = \partial_t \mathbf{x}(\mathbf{a}, \tau) \), and the density \(\rho : \rho^{-1}(\mathbf{a}) = \det [\partial \mathbf{x}(\mathbf{a})/\partial \mathbf{a}^t] \).

Particle labels can be interpreted as the initial co-ordinates of the fluid particles, and the relabeling transformation as a smooth reshuffling (diffeomorphism) of the particle labels, akin to a passive co-ordinate transformation, which leaves the fluid velocity and density unaffected and hence leaves the action invariant.

Relabeling transformations are changes of the particle labels: \(a^i \rightarrow \tilde{a}^i = a^i + \epsilon \eta^i \), where \(\eta^i \) satisfies (i) \(\partial \eta^i/\partial \tau = 0 \), which ensures that the velocity is unchanged, and (ii) \(\partial \eta^i/\partial a^i = 0 \), which ensures that the density \(\rho = \det (\partial \mathbf{x}/\partial \mathbf{a})^{-1} \) is invariant. The positions of the fluid particles remain unchanged under such a transformation, i.e., \(\tilde{x}(\tilde{\mathbf{a}}, \tau) = \mathbf{x}(\mathbf{a}, \tau) \). The conserved charge associated with relabeling transformations [40–44] is

\[
Q_{\text{Euler}} = \int d^3a \ u_i \frac{\partial x^i}{\partial a^j} \eta^j,
\]

where \(u_i = \partial x_i/\partial \tau \).

The conservation of \(Q_{\text{Euler}} \) gives both Kelvin’s circulation theorem and helicity conservation for different choices of \(\eta \). Evaluating \(Q_{\text{Euler}} \) for the relabeling transformation \(\eta^j = \int_C \mathbf{u} \cdot d\mathbf{x}(s) \) which infinitesimally translates particle labels along a loop \(C \) [42,43,51] gives the circulation along the loop \(C \): \(\Gamma_C = \int_C \mathbf{u} \cdot d\mathbf{x} \). Evaluating \(Q_{\text{Euler}} \) for the relabeling transformation \(\eta^j = \epsilon^{jkl}(\partial u_k/\partial a^l)(\partial x^l/\partial a^i) \) which infinitesimally translates the particle labels \(\mathbf{a} \) along vortex lines, gives the helicity \(H_{\text{Euler}} = \int \mathbf{u} \cdot \omega \ d^3x \) [40–44]. Conservation of helicity follows as a special case of Kelvin’s circulation theorem: from the conservation of the sum of circulations along all the vortex lines in the fluid, weighted by the flux of each vortex line.

\(^3\)For more details on Noether’s second theorem, see Refs. [48,49].
We seek conserved quantities analogous to helicity and circulation in superfluids by seeking analogs of the relabeling symmetry transformations. The action for the Gross-Pitaevskii superfluid in terms of the hydrodynamic variables \(\rho = m |\psi|^2 \) and \(\phi = \hbar \arg \psi \) is

\[
S_{\text{gpe}} = - \int dt \rho \, d^3 x \left(\frac{\partial_t \phi}{m} + \frac{(\nabla \phi)^2}{2m^2} + \frac{g}{2m^2} \rho + \left(\frac{\hbar \sqrt{\rho}}{m \sqrt{2 \rho}} \right)^2 \right),
\]

where the last term \((\nabla \sqrt{\rho}/\sqrt{\rho})^2\) is known as the “quantum pressure” term and has no classical analog. Its primary effect is to regularize the size of the vortex core [52–54] and enable vortex reconnections [28], and is negligible when the typical length scale of density variations is much larger [28] than the “healing length” \(\xi = \sqrt{\hbar^2/(2m \rho_{\text{max}})} \). We make the Thomas-Fermi approximation [25,28,55] which neglects the “quantum pressure” term and captures well the dynamics of superfluid vortices [28,55–57]. Within this approximation, we seek to express the action for the Gross-Pitaevskii superfluid as a Casimir invariant [40,43] (see Ref. [60] for details).

Our calculation shows that even in the absence of a “quantum pressure” term, the relabeling symmetry yields a vanishing conserved quantity, instead of conservation of circulation and helicity. This vanishing of “superfluid helicity” is consistent with an alternative calculation based on helicity as a Casimir invariant [40,43] (see Ref. [60] for details).

\footnote{As described in Refs. [58,59], under a Galilean transformation: \((x \to x' = x - vt, t \to t') \), the phase transforms as \(\phi(x, t) \to \phi(x', t) = \phi(x, t) - [v \cdot x - (v \cdot v)t]/2 \), assuming \(m = \hbar = 1 \).}
IV. SUPERFLUID HELICITY—A GEOMETRIC INTERPRETATION

The vanishing of superfluid helicity and circulation Q_{gpe} is a consequence of a relation between the geometry of superfluid vortex lines and phase isosurfaces, as we now illustrate.

For a relabeling transformation\(^6\) along a closed loop γ encircling a vortex line as shown in Fig. 2, the vanishing of the conserved charge comes from a cancellation between the circulation $\oint_{\gamma} u \cdot dl$ and the change in phase $\mathcal{F}_{\gamma} (-\nabla \phi) \cdot dl$. We note, however, that by judiciously choosing the shape of the loop, so that it lies entirely on a phase isosurface as depicted in Fig. 2, it is possible to make the contribution Q_{phase} vanish identically. The vanishing of Q_{gpe} then acquires a simple geometric interpretation, which we elucidate below.

A curve along which Q_{phase} vanishes identically is constructed by offsetting the vortex line C_i along a phase isosurface by a distance Δ (see Fig. 2) to give a new closed curve $C'_i(\Delta)$: $a'(s) = a(s) + \Delta \hat{n}(s)$, where $a(s) \in C_i$, and $\hat{n}(s)$ is perpendicular to the vortex line and tangent to the phase isosurface. The quantum pressure term is negligible on the new closed curve $C'_i(\Delta)$ as long as the distance Δ is large compared to the healing length ξ. The conserved charge Q_{gpe} evaluated for a relabeling transformation\(^7\) $\eta(\Delta)$ which translates particle labels along $C'_i(\Delta)$ has no contribution from Q_{phase}, and becomes the circulation along the curve $C'_i(\Delta)$: $Q_{\text{gpe}} = \oint_{C'_i(\Delta)} u \cdot dl$. This circulation can be evaluated by substituting the Biot-Savart flow field for u, since the compressible part of u does not contribute.

Q_{gpe} then becomes the linking of the ribbon C_i with all the vortex lines in the superfluid, i.e.,

$$Q_{\text{gpe}} = \sum_{j \neq i} \Gamma_j \mathcal{L}_{ij} + \Gamma_i \mathcal{L}_{ii} = 0,$$

where \mathcal{L}_{ij} denotes the linking between the vortex line C_j, and we have used the Gauss linking integral [61]. The vanishing of the conserved charge Q_{gpe} follows as a result of the linking \mathcal{L}_{ij} between the offset line C'_i and the vortex line C_i canceling the linking \mathcal{L}_{ij} between the offset line C'_i and all the other vortex lines C_j, $j \neq i$. Furthermore, assuming that the section of the phase isosurface bounded by the two loops C'_i, C_i can be considered as a smooth ribbon, we can use the Călugăreanu-White-Fuller theorem [62–65] to express \mathcal{L}_{ij} as the sum of the writhe (Wr_i) and the twist (Tw_i) of the ribbon (see Fig. 2), giving

$$Q_{\text{gpe}} = \sum_{j \neq i} \Gamma_j \mathcal{L}_{ij} + \Gamma_i Wr_i + \Gamma_i Tw_i^* = 0. \tag{5}$$

\(^5\) $\eta_{\gamma} = m \oint_{\gamma} ds \delta^{(3)}(a - a(s)) \frac{da(s)}{ds}$, where $a(s) \in \gamma$.

\(^6\) $\eta(\Delta) = m \oint_{C'_i(\Delta)} ds \delta^{(3)}(a - a'(s)) \frac{da'(s)}{ds}.$
The vanishing of the conserved charge Q_{gpe} is thus related to the vanishing of the sum of the linking of a vortex line C_i with all other vortex lines $\sum_{j \neq i} L_{ij}$, its writhe W_{ri}, and the twist T_{wi}^* of a ribbon formed by a phase isosurface ending on it.

The vanishing of these geometric quantities was first studied in the context of helicity of framings of magnetic flux tubes [20], and is a consequence of the fact that a phase isosurface is an orientable surface which has as its boundary, all the vortex lines in the superfluid, i.e. it is a Seifert surface [20,66–68] for the vortex lines in the superfluid. This relation between linking and writhing of vortex lines and the twisting of phase isosurfaces has been used in superfluid simulations [9,69] to calculate the centerline helicity (linking and writhing of vortex lines) and was elaborated on in recent efforts to define a superfluid helicity [21,22].

V. CLASSICAL HELICITY—THE SINGULAR LIMIT AND DISSIPATION

We now address the question of whether a classical notion of helicity can be recovered in superfluids and if its dynamics are akin to that in Euler flows or viscous flows. While vorticity in superfluids is necessarily concentrated on lines of singular phase, vorticity in classical fluids can be continuously distributed and indeed must be to avoid a physical singularity in the flow. Following [8,70,71], a natural way of recovering a “classical” notion of helicity is to consider a continuous vorticity distribution as made up of an infinite collection of vortex lines. The centerline helicity H_c of a collection of singular vortex lines is

$$H_c = \sum_i \sum_j \Gamma_i \Gamma_j L_{ij} = \sum_i \sum_{j \neq i} \Gamma_i \Gamma_j L_{ij} + \sum_i \Gamma_i^2 L_{ii} = \sum_i \sum_{j \neq i} \Gamma_i \Gamma_j L_{ij} + \sum_i \Gamma_i^2 W_{ri},$$

where Γ_i is the circulation around the ith vortex line, W_{ri} is the writhe of the ith vortex line, and L_{ij} is the linking between the ith and jth vortex lines. Since the above expression includes the writhe of vortex lines which is not a topological invariant, the centerline helicity of a collection of singular vortex lines is not conserved [9]. Assuming that the circulation of each vortex line is Γ_i, the centerline helicity rescaled by the square of the total circulation $(N \Gamma)^2$ becomes

$$\frac{H_c}{(N \Gamma)^2} = \frac{1}{N^2} \sum_i \sum_{j \neq i} L_{ij} + \frac{1}{N^2} \sum_i W_{ri}. \tag{7}$$

In the limit $N \to \infty$, the contribution from the writhe term in Eq. (7) scales as $O(1/N)$ and becomes irrelevant, as was shown in Ref. [72], leaving only the contribution from the linking L_{ij} between different vortex lines which is conserved in Euler flows:

$$\lim_{N \to \infty} \frac{H_c}{(N \Gamma)^2} = \lim_{N \to \infty} \frac{1}{N^2} \sum_i \sum_{j \neq i} L_{ij} = \frac{H_{Euler}}{\Gamma_{total}^2}. \tag{8}$$

Hence the rescaled centerline helicity of an infinite collection of vortex lines is conserved in Euler flows. However, for a finite number of singular vortex lines, the writhe term remains relevant albeit $O(1/N)$ and the rescaled centerline helicity is not conserved. The case of a superfluid is interesting in the context of this discussion, since quantization imposes a fundamental granularity in the vorticity field.

Since the above calculation is independent of the dynamics of the vortices, it leaves unanswered the question of what the dynamics of the rescaled centerline helicity of collections of superfluid vortex lines will be. In particular, will the centerline helicity remain unchanged as in Euler flows, follow the dynamics observed in viscous flows, or have entirely different dynamics?

In the case of Euler flows, the helicity dynamics are simple: H_c remains constant (in the limit of an infinite number of vortex lines). In the case of viscous flows, the dynamics are more subtle. For a freely evolving helical vortex, as shown in a recent study [73], the total helicity converges to the writhe over time. This can be rationalized by separating the helicity into contributions from (a) the
FIG. 3. A threefold helical superfluid vortex bundle [shown in panel (a)] evolving as a coherent structure, rotating as it travels forward, akin to a single threefold helical vortex [shown in panel (b)]. A cross section of the threefold helical superfluid vortex bundle reveals a central vortex and five equally spaced vortices arranged around the central vortex at distance 6ξ (where ξ is the healing length). After a long time, the helical vortex bundle disintegrates (symbolized by the gray dots) and loses its bundle-like structure.

linking between bundles, (b) the writhing (coiling) of bundles, and (c) the local twisting of vortex lines, with the total twist being the difference between the total helicity and the former two. Since the twist is the only local component of helicity, it is the only one acted upon by viscosity and thus the only one that dissipates.

The special role of twist can be understood by computing the instantaneous rate of helicity dissipation:

$$\frac{\partial}{\partial t} \mathcal{H} = -2\nu \int \omega \cdot \nabla \times \omega = -2\nu \int |\omega|^2 \hat{\omega} \cdot \nabla \times \hat{\omega},$$

where $\hat{\omega}$ captures the local twisting of vortex lines [74], and vanishes identically for a twist-free thin-core vortex [73]. While the role of the twist-free state as the zero-dissipation state is clear, the dynamics of the approach to such a state are more challenging to study because of their dependence on the local details of the vortex core [73].

Thus, for a collection of superfluid vortices, a constant rescaled centerline helicity would suggest Euler-flow like behavior, while the convergence of the rescaled centerline helicity to the writhe would suggest viscous flowlike behavior.

VI. CENTERLINE HELICITY OF SUPERFLUID VORTEX BUNDLES

Superfluid vortex bundles which approximate the structure of a classical thin-core vortex tube have been shown to be robust coherent structures [23,24]. We construct thin bundles of equally spaced vortex lines winding around a central vortex loop as shown in Fig. 3(a), whose shape controls the writhe (coiling) of the vortex bundle. These superfluid vortex bundles evolve coherently over distances of the order of their size (see Figs. 3 and 4 and movies in the Supplemental Material [60]) before becoming unstable and disintegrating, as observed in previous work [23,24]. The coherent portion of the evolution of these bundles resembles the dynamics of single vortex loops in superfluids and the evolution of vortices in classical fluids and has been studied for ring bundles [24] and reconnecting line bundles [23]. When the vortex bundles become unstable, the number of individual vortices quickly proliferates, as shown in the bottom panel of Fig. 5, with the number of vortex strands acting as a natural indicator of whether the bundle has disintegrated. We use the earliest time T at which the number of vortex filaments $N(T)$ exceeds their initial number N_0 by 50% as the time until which the bundle evolves coherently. Figure 5 shows that the transition between the coherent phase and the disintegration phase of the vortex bundle is sharp.
FIG. 4. A superfluid vortex bundle in the shape of a trefoil knot evolving as a coherent structure, akin to a single trefoil knot vortex. (a) A trefoil knotted vortex bundle reconnects to form a smaller threefold distorted ring bundle and a larger threefold distorted ring bundle, which lose their bundle-like structure over time. A cross section of the initial trefoil knotted vortex bundle shows three equally spaced vortices arranged on the circumference of a disk of radius 5ξ. (b) A single trefoil knotted vortex reconnects to form a smaller threefold distorted ring and a larger threefold distorted ring, which undergoes further reconnections to give a large distorted ring at long times.

In order to inject different amounts of centerline helicity in the bundle, we twist the lines of the bundle around the central vortex, thus varying the centerline helicity independently of the writhe of the bundle. An initial complex order parameter ψ for these vortex bundles is constructed following the methods outlined in Refs. [9,34,69] and evolved by numerically solving the Gross-Pitaevskii equation [Eq. (1)] using a split-step method. Simulations of vortex bundles in the shape of helices and trefoil knots show that their coherent evolution is much like their classical vortex tube counterparts [9,75]. Helical vortex bundles propagate coherently without a significant change in shape (see Fig. 3) for longer times, while knotted vortex bundles stretch and reconnect (see Fig. 4) to form disconnected loop bundles which quickly become unstable. Vortex bundles which evolve coherently over long times allow us to study the dynamics of their rescaled centerline helicity $h = H_c/(N \Gamma)^2$. We focus on helical vortex bundles which evolve coherently over distances of $6\bar{r}$ or greater, and in particular study bundles in which the central vortex is a toroidal helix (see Figs. 5 and 6) winding two to four times in the poloidal direction around tori of aspect ratios 0.35 (twofold), 0.25 (threefold), and $0.16, 0.18, 0.2$ (fourfold), as it winds around once in the toroidal direction. We consider superfluid vortex bundles with $N = 5$ and $N = 6$ vortex lines each having a circulation $\Gamma = 2\pi$, an initial intervortex spacing of $d \sim 6\xi$ (see Fig. 3), and an overall rms radius $\bar{r} \sim 50\xi$. To avoid the possibility that symmetry stabilizes the vortices, we add a small amount of Gaussian noise to each vortex line in the transverse direction. To obtain sufficient statistics, we simulated the evolution of a total of 1 156 vortex bundles with a volume of $(256\xi)^3$ and a grid spacing of 1ξ. A small number of simulations at double resolution (but the same physical volume) yield identical observations.

Unlike in Euler flows, where the rescaled centerline helicity h of a bundle of singular vortex lines emerges as a conserved quantity in the limit of large N, the rescaled centerline helicity h of superfluid vortex bundles appears to change with time. Assuming these superfluid vortex bundles approximate thin-cored vortex tubes, we can further decompose their rescaled centerline helicity

7The twisting of vortex lines mentioned here describes the winding of one vortex line around another and is distinct from the twist T_w^* in Eq. (5) of the ribbon formed by a phase isosurface ending on a vortex line.
Helicity in Superfluids: Existence and the Nature of Vortex Bundles

FIG. 5. Helical vortex bundles \((N = 6)\) at different stages of evolution (top row), with the corresponding points in the graphs indicated by colored circles (bundle-like structure preserved), and gray circles (bundles disintegrate). (a) Twofold helical vortex bundles with aspect ratio 0.35, (b) threefold helical vortex bundles with aspect ratio 0.25, and (c) fourfold helical vortex bundles with aspect ratio 0.2. The rescaled helicity \(h\) (middle row) for superfluid vortex bundles having the same overall shape (writhe) but different amounts of twist trends toward their initial average writhe (horizontal gray band), before eventually decaying toward zero (gray dotted lines). After a vortex bundle disintegrates at time \(T = \min t' : N(t')/N(0) > 1.5\), its rescaled helicity is shown by a gray dotted line. Bottom panel shows the ratio of the number of vortex filaments at time \(t'\) to the initial number of vortex filaments: \(N(t')/N(0)\). For each helical vortex bundle configuration, multiple (>10) simulations are performed with random Gaussian noise (rms is 2% of the rms radius) added to the initial bundle. The mean rescaled helicity is indicated by the solid lines, and the width of the shaded band around the solid line indicates the standard deviation (2\(\sigma\)).

[Eq. (7)] into contributions from the twisting of the vortex lines around each other, and their individual writhes. Using \(L_{ij} = Tw_{ij} + Wr_{ij}\), the rescaled centerline helicity becomes

\[
\frac{H_c(t)}{(N\Gamma)^2} = \frac{1}{N^2} \sum_i \sum_{j \neq i} [Tw_{ij}(t) + Wr_{ij}(t)] + \frac{1}{N^2} \sum_i Wr_i(t) = \frac{1}{N^2} \sum_i \sum_{j \neq i} Tw_{ij}(t) + \frac{1}{N} \sum_i Wr_i(t)
\]

\[
= \frac{1}{N^2} \sum_i \sum_{j \neq i} Tw_{ij}(t) + \langle Wr(t) \rangle
\]

(9)

where the average writhe \(\langle Wr(t) \rangle = \sum_i Wr_i(t)/N\) includes contributions from the writhe term in Eq. (7), as well as from the linking term by decomposing it into writhe and twist contributions.

Our numerical simulations show that the rescaled centerline helicity of long-lived superfluid vortex bundles tends toward their average initial writhe \(\langle Wr(0) \rangle\), as in Figs. 5 and 6, suggesting\(^8\) that the twist term in Eq. (9) decays over time. The dynamics of the rescaled centerline helicity \(h\) are thus classical.

8The difficulty of calculating the average writhe at later times stems from the small-wavelength fluctuations in the vortex lines which contribute to large fluctuations in their writhe.
The ratio $h(T)/h(0)$ approaches the ratio $(\langle \mathrm{Wr}(0) \rangle/h(0)$ of the average initial writhe to the initial rescaled helicity for a variety of helical vortex bundles (1209 simulations) in the shape of twofold (aspect ratio: 0.35), threefold (aspect ratio: 0.25), and fourfold (aspect ratios: 0.16, 0.18, 0.2) helices with $N = 5$ and $N = 6$ vortex filaments where T is a proxy for the time at which the vortex bundle disintegrates. To divide by the initial helicity $h(0)$, we only consider vortex bundles whose initial helicity satisfies $|h(0)| > 0.25$. Vortex bundles with initial helicity $|h(0)| < 0.25$ also display similar behavior with $h(T) \rightarrow \langle \mathrm{Wr}(0) \rangle$ as shown in Fig. 5; see Ref. [60] for more details.

The role of writhe in the dynamics of centerline helicity of superfluid vortex bundles in our simulations has a striking resemblance to the role of writhe in the helicity dynamics of vortices in viscous flows [73]. This points to a “classical limit” in which classical behavior is recovered from quantized vortex filaments geometrically by replacing single vortex filaments with vortex bundles. However, owing to reconnections, the classical behavior that is recovered is not that of Euler flows but that of the Navier-Stokes equations in which viscosity acts to dissipate twist. Our results corroborate the role of writhe as an attractor for the helicity at long times, adding a geometric lens to previous work [76,77] on the dissipative effects of vortex reconnections in superfluids.

VII. CONCLUSION

We have addressed the existence of an additional conservation law in superfluids—conservation of helicity—by generalizing to superfluids the particle relabeling symmetry, which underlies helicity conservation in Euler flows. The application of Noether’s second theorem to the particle relabeling symmetry [42,50] yields the conservation of helicity and circulation in Euler flows; however, for superfluid flows it yields a trivially vanishing conserved quantity. This is owing to the appearance of an additional term that comes from the phase of the superfluid order parameter, not present in Euler flows. This additional term has a well-known geometric interpretation for the vanishing of “superfluid helicity” in terms of a relation between the linking and writhing of vortex lines, and the twisting of phase isosurfaces near vortex lines.

On replacing superfluid vortices with superfluid vortex bundles, their centerline helicity becomes the classical helicity in the limit of an infinite collection of vortices. We study the dynamics of the centerline helicity of superfluid vortex bundles via numerical simulations and find behavior akin to that of classical helicity in a viscous fluid, with the writhe acting as an attractor for the final value of helicity.
ACKNOWLEDGMENTS

We thank Ari Turner, Davide Proment, and Carlo Barenghi for useful discussions and feedback on the manuscript. This work was supported by U.S. NSF grant DMR-1351506 and the Packard Foundation. Additional support was provided by the Chicago MRSEC (U.S. NSF grant DMR 1420709).

