
Weaving Knotted Vector Fields with Tunable Helicity

Hridesh Kedia,1,* David Foster,2 Mark R. Dennis,2 and William T. M. Irvine1
1Department of Physics, James Franck Institute, Enrico Fermi Institute,
The University of Chicago, 929 E 57th St., Chicago, Illinois 60637, USA

2HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK
(Received 17 July 2016; published 29 December 2016)

We present a general construction of divergence-free knotted vector fields from complex scalar fields,
whose closed field lines encode many kinds of knots and links, including torus knots, their cables, the
figure-8 knot, and its generalizations. As finite-energy physical fields, they represent initial states for fields
such as the magnetic field in a plasma, or the vorticity field in a fluid. We give a systematic procedure for
calculating the vector potential, starting from complex scalar functions with knotted zero filaments, thus
enabling an explicit computation of the helicity of these knotted fields. The construction can be used to
generate isolated knotted flux tubes, filled by knots encoded in the lines of the vector field. Lastly, we give
examples of manifestly knotted vector fields with vanishing helicity. Our results provide building blocks
for analytical models and simulations alike.
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Introduction.—The idea that a physical field—such as a
magnetic field—could be weaved into a knotty texture has
fascinated scientists ever since Lord Kelvin conjectured
that atoms were, in fact, vortex knots in the aether.
Since then, topology has emerged as a key organizing
principle in physics, and knottiness is being explored
as a fundamental aspect of classical and quantum fluids
[1–8], magnetic fields in light and plasmas [9–19], liquid
crystals [20–23], optical fields [24,25], nonlinear field
theories [26–29], wave chaos [30], and superconduc-
tors [31,32].
In particular, helicity—a measure of average linking of

field lines—is a conserved quantity in ideal fluids [33,34]
and plasmas [35–37]. Helicity thus places a fundamental
topological constraint on their evolution [1,10], and plays
an important role in turbulent dynamo theory [38–40],
magnetic relaxation in plasmas [41–43], and turbulence
[44,45]. Beyond fluids and plasmas, helicity conservation
leads to a natural connection between the minimum energy
configurations of knotted magnetic flux tubes [10,42,46]
and tight knot configurations [47,48], and tentatively with
the spectrum of mass energies of glueballs in the quark-
gluon plasma [49–51].
Knotted field configurations provide a natural setting for

studying helicity, but more subtlety is required to tie a knot
in the lines of a vector field than in a shoelace: all the
streamlines of the entire space-filling field must twist to
conform to the knotted region. The difficulty of construct-
ing knotted field configurations with controlled helicity
makes it challenging to understand the role of helicity in the
evolution of knotted structures [1,10,12].
In this Letter, we show how to explicitly construct

knotted, divergence-free vector fields with a wide range
of topologies, which have finite energy and tunable helicity

and give a systematic prescription for calculating the
helicity of these knotted fields.
Studying the dynamics of these knotted field configu-

rations in fluids and plasmas may deepen our understand-
ing of helicity, give insights into the longstanding problem
of “magnetic relaxation under topological constraints” [52],
and help understand the stability of plasmas in knotatrons
—magnetic confinement devices in the shape of knots [53].
A classical problem from mathematics is the study of

knots and links as nodal lines (zeros) of complex scalar
fields [25,54–57]. In fact, the level sets of a complex scalar
field can give rise to collections of knotted curves that
smoothly intertwine to fill up space. Well-known examples
are the Hopf fibration [11,13,14,58–60], Seifert fibrations
[15,61] and Milnor fibrations [25,54,62]. Many knots can
be embedded as the nodal lines of complex scalar fields in
the family of lemniscate knots and their generalizations
[63], which includes all torus knots and links [55], the
figure-8 knot and generalizations [25] (including the
Borromean rings), cable knots [64], and links of any
of these.
Some representative examples of knotted complex scalar

fields are illustrated in Fig. 1, where the level curves wind
around knotted or linked tori, encoding the Hopf link
[Fig. 1(b)], the trefoil knot [Fig. 1(c)], the figure-8 knot [25]
[Figs. 1(a) and 1(d)], a link of two trefoils [Fig. 1(e)], and a
cable knot [Fig. 1(f)]. In all of these examples, the level
curves of the complex scalar field ψ , for any complex value
of ψ , organize around a core set of lines where ψ ¼ 0, ∞
(zeros and poles of ψ). Our construction of knotted vector
fields follows from such knotted complex scalar fields,
based on [29,55,63], where the level curves of constant
complex amplitude are collections of knotted curves filling
up space.
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A vector field tangent to the level curves of a complex
scalar field ψ is given simply by the cross product
−i∇ψ� ×∇ψ ¼ ∇ × Imðψ�∇ψÞ. A vector field with the
same flow lines is

B ¼ 1

2πi
∇ψ� ×∇ψ

ð1þ ψψ�Þ2 : ð1Þ

This field is smooth everywhere, divergence free
(∇ · B ¼ 0), and has finite energy (

R
d3xjBj2 < ∞). This

vector field arises in a variety of different contexts, and was
used previously to construct knotted initial states for
electromagnetic fields [11,15] and topological solitons in
ideal magnetohydrodynamics [9].
Since the flow lines of B (i.e., the level sets of ψ) can

clearly be knotted, it is natural to suppose that such fields
have nontrivial helicity. Explicitly calculating the helicity
H ¼ R

d3xA · B requires the choice of a vector potential A
such that ∇ ×A ¼ B. A natural candidate,

A ¼ 1

4πi
ðψ�∇ψ − ψ∇ψ�Þ

ð1þ ψ�ψÞ ; ð2Þ

suggests that the helicity of the knotted vector field B
vanishes. We will show that A in Eq. (2) has a singular part
which can be systematically removed, leading to a non-
singular vector potential, which allows explicit calculation
of the helicity of all these knotted fields.
The helicity of the resulting knotted vector field can be

computed explicitly, and may be varied without changing

the underlying knotted structure. Furthermore, these fields
may be restricted to the interior of knotted flux tubes [66]
whose helicity can be calculated exactly. Lastly, we
construct knotted fields with vanishing total helicity, but
nonvanishing helicity in the interior of knotted flux tubes—
tori tangent to the lines of B.
Rational maps.—Rational maps have found success in

approximating certain minimum energy solutions of the
Skyrme model [68], and this technique was extended by
Sutcliffe [29] to approximate knotted solutions of the
Skyrme-Faddeev model. The knotted vector field construc-
tion described here is based on rational maps of similar
form. A rational map is defined as the ratio of two complex-
valued polynomials ψ ¼ Pðu; u�; v; v�Þ=Qðu; u�; v; v�Þ,
where the nodal lines (zeros) of Qðu; u�; v; v�Þ have the
form of the desired knot, and Pðu; u�; v; v�Þ is chosen to
encode the desired helicity [Fig. 4]. Here, as in Fig. 1, ðu; vÞ
are complex coordinates on S3, which stereographically
project (see Supplemental Material [65]) to coordinates
ðx; y; zÞ in R3 by

u ¼ 2ðxþ iyÞ
1þ r2

; v ¼ 2zþ iðr2 − 1Þ
1þ r2

; ð3Þ

where r2 ¼ x2 þ y2 þ z2, and ðu�; v�Þ denote complex
conjugates of ðu; vÞ.
Such ψ automatically give rise to a vector field B as in

Eq. (1), whose flow lines coincide with the level curves of
ψ . The core set of lines that organize the flow lines ofB are
the zeros of P and Q (see Fig. 2). Awide variety of knotted

FIG. 1. Knotted structures encoded in the level sets of the
complex scalar fields ψ ¼ Pðu; u�; v; v�Þ=Qðu; u�; v; v�Þ,
where ðu; vÞ are functions of ðx; y; zÞ [see Eq. (3)].
(a) Figure-8 knots: ψ ¼ v=½64u3 − 12uð3 − 2v2 þ 2v�2Þþ
ð14v2 þ 14v�2 − v4 þ v�4Þ�. (b) Linked rings: ψ ¼ u2=
ðu2 − v2Þ. (c) Trefoil knots: ψ ¼ u3=ðu3 þ v2Þ. Level curves
of ψ encode torus knots and links when Qðu; vÞ is of
Brieskorn form [54]: up þ vq. (d) Figure-8 knots (symmetric):
ψ¼u=½64v3−12vð3þ2u2−2u�2Þ−ð14u2þ14u�2þu4−u�4Þ�.
(e) Linked trefoil knots, constructed from 2 copies of the
Milnor polynomial for a trefoil knot. See Supplemental
Material [65] for details. (f) C2;3

3;2 cable knots: ψ ¼ ðuvÞ=
ðv4 − 2u3v2 − 2iu3vþ u6 þ 1

4
u3Þ.

(a) (b) (c)

(d) (e) (f)

FIG. 2. Organization of the lines of B around lines
where ψ ¼ Pðu; vÞ=Qðu; vÞ is 0 or ∞. (a), (d) Q ¼ 0
corresponds to the trefoil and figure-8 knots. Qtrefoil ¼ u3 þ v2,
Qfig-8¼64v3−12vð3þ2u2−2u�2Þ− ð14u2þ14u�2þu4−u�4Þ.
(b), (e) The lines of B are tangent to nested knotted tori (blue),
organized around the knots where Q ¼ 0. (c),(f) Pðu; vÞ ¼ 0
corresponds to the z axis. The lines of B are tangent to nested
tori (cyan) organized around Pðu; vÞ ¼ 0.
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fields B can be constructed from rational maps ψ by
encoding the desired knot in the zeros of Qðu; u�; v; v�Þ for
the various kinds of knot listed above (see Supplemental
Material [65] for details).
Structure of knotted field lines.—We rewrite B using

Euler potentials [69–72]:

B ¼ ∇
�

ψψ�

1þ ψψ�

�
×

1

4πi
∇ log

�
ψ

ψ�

�

¼ 1

2π
∇χ ×∇η; ð4Þ

where χ ¼ ðψψ�Þ=ð1þ ψψ�Þ, χ ∈ ½0; 1�, and η ¼
ð1=2iÞ log ðψ=ψ�Þ, η ∈ ½0; 2πÞ. We note that as r → ∞,
j∇χj ∼Oð1=rÞ, j∇ηj ∼Oð1=rÞ, so that the energy density
jBj2 ∼Oð1=r4Þ and the energy of all such fields, as the
square integral of B, is finite.
The lines of B are tangent to surfaces of constant χ and

Seifert surfaces of constant η (see Fig. 3), which can be
considered as a generalization of the surfaces of constant
ρð↔ χÞ and constant ϕð↔ ηÞ in cylindrical coordinates
ðρ;ϕ; zÞ, with the knot Q ¼ 0 replacing the z axis.
The surfaces of constant χ are knotted tori, nested inside

one another (Fig. 3), with smaller values of χ corresponding
to larger tori, and the largest value χ ¼ 1 corresponding to
the knotQ ¼ 0 at the center of the tori [Figs. 2(a) and 2(d)].
Isosurfaces of smaller χ are increasingly bigger knotted
tori, eventually colliding to give tori organized around
P ¼ 0, as shown in Figs. 2(c) and 2(f) in cyan, which
converge to the lines P ¼ 0 as χ → 0.
By contrast, η is constant on Seifert surfaces for the core

set of lines: P ¼ 0, Q ¼ 0. Seifert surfaces for Q ¼ 0 are
shown in Fig. 3. Since η is well defined only in a multiply
connected volume, which excludes the core set of lines, the
helicity of B can be nonvanishing [73], in spite of being
expressible in terms of Euler potentials.
Helicity calculation.—A smooth vector potential A

satisfying ∇ ×A ¼ B is needed to calculate the helicity
H ¼ R

d3xA · B of these knotted fields explicitly. We now
give a general prescription for computing such a vector
potential, starting by rewriting A in Eq. (2) as

A ¼ 1

4πi

�
ψψ�

1þ ψψ�

�
∇ log

�
ψ

ψ�

�
: ð5Þ

Substituting ψ ¼ Pðu; u�; v; v�Þ=Qðu; u�; v; v�Þ gives

A ¼ 1

4πi

×

�jPj2∇ logð PP�Þ þ jQj2∇ logðQQ�Þ
jPj2 þ jQj2 −∇ log

�
Q
Q�

��
ð6Þ

The last term containing ∇ log ðQ=Q�Þ is singular at
Q ¼ 0. Since jQj2∇ logðQ=Q�Þ ¼ Q�∇Q −Q∇Q�, this
term in the fraction is smooth and nonsingular.
Hence, the singular gauge transformation ~A ¼

Aþ ð1=4πiÞ∇ log ðQ=Q�Þ removes the singularity in A,
allowing the helicity to be computed directly. The vector
potential ~A is smooth everywhere, giving the correct
helicity H ¼ R

d3x ~A ·B, which is equal to the Hopf
invariant of the map ψ [29,74] by the Whitehead integral
formula. Hence, we can explicitly compute the helicity [75]
of arbitrary knotted fields B and therefore, the Hopf
invariant of arbitrary rational maps.
Surfaces of constant log ðQ=Q�Þ yield explicit expres-

sions for Seifert surfaces of the knot Qðu; u�; v; v�Þ ¼ 0
(see Fig. 3) and could be used to generate initial wave
functions describing knotted vortices in superfluids and
Bose-Einstein condensates.
The simplest illustration of our construction is given by

the Hopf map [11,13,58–60] ψ ¼ u=v. The vector potential
given by Eq. (5) has a singularity at v ¼ 0 (the unit circle in
the xy plane), which is removed via the singular gauge
transformation ~A ¼ Aþ ð1=4πiÞ∇ log ðv=v�Þ. The new
vector potential ~A is smooth everywhere and gives the
correct helicity H ¼ R

d3x ~A ·B ¼ 1, equal to the Hopf
invariant of the map [29,74].
Tuning the helicity of a knotted field.—The helicity of B

can be tuned without changing the underlying knotted
structure encoded in B, as for rational maps [29]. The flow
lines of B, contained in the knotted tori of constant χ in the
neighborhood of the knot Q ¼ 0⇔χ ¼ 1, encode knots of
the same type as the knot Q ¼ 0. However, the degree of
winding of these lines—and hence the helicity of B—can
be controlled by changing Pðu; vÞ, as illustrated in Fig. 4.
Knotted fields encoding torus knots and links can be

constructed from maps ψ ¼ Pðu; vÞ=Qðu; vÞ, with
Pðu; vÞ ¼ uαvβ, Qðu; vÞ ¼ uq þ vp. The helicity of these
fields can be varied without changing the underlying
knotted structure by changing α, β in Pðu; vÞ ¼ uαvβ.
The helicity of B, being equal to the Hopf invariant [29,74]
of the map ψ , is H ¼ αpþ βq. The lines of the field B
wind more for higher values of α, β, as indicated by the
higher values of helicity.
Knotted fields encoding other knot types such as

lemniscate knots, cable knots, and iterated torus links
can be constructed from maps ψ ¼ uα=Qðu; u�; vÞ

(a) (b)

FIG. 3. Knotted field structures: knotted flux surfaces
(blue) are surfaces of constant χ, and Seifert surfaces for
Qðu; u�; v; v�Þ ¼ 0 (orange) are surfaces of constant log ðQ=Q�Þ.
(a) Trefoil knot with Qtrefoil, (b) Figure-8 knot with Qfig−8
are defined in Fig. 2.
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[25,63,64,76]. Their helicity is given by H ¼ α degvðQÞ,
where degvðQÞ is the highest power of v appearing in
Qðu; u�; vÞ and can be tuned by changing α.
The helicity of such knotted fieldsB can be tuned further

to yield negative values by substituting P or Q with their
complex conjugates.
Helicity of knotted flux tubes.—Knotted flux tubes,

magnetic flux tubes in plasmas, or vortex tubes in fluid
can be generated by restricting the knotted field B to the
interior of a knotted tube (Fig. 3): χ > χ0 (see Supplemental
Material [65]). Such a knotted flux tube contains flux
ð1 − χ0Þ, and its helicity can be calculated as in [12,67] to
be Hχ0 ¼ ð1 − χ0Þ2Htotal, as the helicity for a uniformly
twisted field with twist equal to Htotal.
Knotted fields with vanishing helicity.—Knotted fields

B, constructed from rational maps ψ ¼ P (i.e., Q ¼ 1),

have vanishing helicity, despite having knotted field lines.
This because vector potential A in Eq. (2) is singularity

free, implyingH ¼ 0. Geometrically, the lines ofB tangent
to the different knotted tori are of different handedness,
and the average linking between the lines vanishes.
However, the lines of B in the interior of a knotted
torus—such that the lines of B are tangent to the torus,
i.e.. the torus is a magnetic surface, so that the helicity in the
torus is gauge invariant—may have nonvanishing helicity,
which is difficult to compute analytically (see
Supplemental Material [65]).
Alternatively, the vanishing of total helicity follows from

the vanishing of the Hopf invariant [29,74] of the map given
by ψ ¼ Pðu; u�; v; v�Þ, since the set of ðu; u�; v; v�Þ, such
that ψ ¼ ∞ is a null set.
Summary.—We have presented a general method for

constructing physically viable knotted vector fields, encod-
ing an arbitrary combination of knots woven together and

shown how to explicitly compute their helicity.
Furthermore, we have shown how to construct knotted
flux tubes, and calculate their helicity.
Knotted fields arising as solutions to Maxwell’s equa-

tions [19] have found application in the construction of
topological solitons in magnetohydrodynamics [16] and
resistive MHD flows [17]. The knotted vector fields
presented here encode a much larger variety of knots,
possessing a richer structure, and studying their evolution
could lead to new insights about the role of helicity in fluids
[40] and plasmas [52,53], and novel topological solitons.
Finally, our systematic procedure for calculating the

helicity of the knotted field B may help accurately
determine the Hopf charge of arbitrarily knotted
Skyrme-Faddeev solitons [27,29] and help tighten the
lower bound on how their minimum energy grows with
their Hopf charge [77].
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