
 

Starting Flow Past an Airfoil and its Acquired Lift in a Superfluid

Seth Musser ,1,* Davide Proment,2 Miguel Onorato,3 and William T.M. Irvine4
1Department of Physics, University of Chicago, Chicago, Illinois 60637, USA

2School of Mathematics, University of East Anglia, Norwich Research Park, NR47TJ Norwich, United Kingdom
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We investigate superfluid flow around an airfoil accelerated to a finite velocity from rest. Using
simulations of the Gross-Pitaevskii equation we find striking similarities to viscous flows: from production
of starting vortices to convergence of airfoil circulation onto a quantized version of the Kutta-Joukowski
circulation. We predict the number of quantized vortices nucleated by a given foil via a phenomenological
argument. We further find stall-like behavior governed by airfoil speed, not angle of attack, as in classical
flows. Finally we analyze the lift and drag acting on the airfoil.
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The development of flow around an airfoil, see sketch
in Fig. 1(a), is a textbook problem in fluid mechanics
[1–3]. Describing this fundamental process has practical
relevance since it provides a route to understanding the
controlled production and release of vorticity from asym-
metric structures. In viscous weakly compressible fluids, in
the subsonic regime, this release occurs through a subtle
interplay of inviscid and viscous dynamics.
To address the inviscid, incompressible, and two-

dimensional dynamics, one can use the celebrated con-
formal Joukowski transformation to relate the flow around
an airfoil to the simpler flow past a cylinder. This makes it
possible to readily derive a family of allowed flows,
characterized by the value of the circulation Γ around
the airfoil. All but one of these flows feature a singularity
in the velocity at the trailing edge. To avoid this singularity,
the Kutta-Joukowski condition prescribes a circulation,
ΓKJ ¼ −πU∞L sinðαÞ, where L is the airfoil chord, U∞
the speed, and α the angle of attack. It then follows that the
airfoil experiences a lift force per unit of wingspan given by
−ρU∞ΓKJ and will not experience any drag force.
A major issue with this inviscid theory is that the

circulation ΓKJ is prescribed by hand. Replacing the ideal
fluid with an incompressible but viscous fluid and enforc-
ing the no-slip boundary condition gives rise to a boundary
layer where the velocity interpolates from zero, on the
surface of the airfoil, to the potential velocity outside [1].
Far from the boundary layer, the flow remains similar to the
inviscid case. As the trailing edge is approached, the high
speeds create a pressure gradient that pulls the boundary
layer off the airfoil and into a starting vortex, generating a
circulation ΓKJ around the airfoil [see Fig. 1(a)]. Because
the airfoil acquires the same circulation as in the ideal case,
its lift remains unchanged, though the airfoil experiences a
nonzero drag due to viscosity [1].

In this Letter we address the physics of flow past an
airfoil in a superfluid. In particular, we ask whether (i) there
exists a mechanism allowing for the generation of a
circulation and, if so, (ii) whether the Kutta-Joukowski
condition holds, and finally (iii) whether the airfoil expe-
riences lift and/or drag. In order to answer these questions
we combine an analytical approach with numerical simu-
lations. As a model for the superfluid, we consider the
Gross-Pitaevskii equation (GPE), which has been success-
fully used to reproduce aspects of both inviscid and viscous
flow, including the shedding of vortices from a disk [4–7],

FIG. 1. Generation of circulation: (a) a cartoon showing the
starting vortex produced in a viscous fluid. (b) The phase field
around the airfoil potential. By counting phase jumps around the
airfoil the value of the circulation can be obtained. A quantized
vortex is visible behind the airfoil’s trailing edge. (c) Left hand:
the density field in the full computational box. The density is
rescaled by the superfluid bulk density, length scales are ex-
pressed in units of ξ, quantized vortices are shown as red dots.
A closer view of airfoil is shown on the right. Relevant airfoil
parameters are labeled and the vortex is circled in red.
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an ellipse [8,9], a sphere [10] and a cylinder [8,11], the
formation of von Kármán vortex sheets [5,12], the emer-
gence of a superfluid boundary layer [13], the dynamics
and decay of vortex loops and knots [14,15], and the
appearance of classical-like turbulent cascades [16,17].
The two-dimensional GPE is:

iℏ
∂ψ
∂t ¼

�
−
ℏ2

2m
∇2 þ V þ gjψ j2

�
ψ ; ð1Þ

where ψ ¼ ψðx; y; tÞ is the wave function of the superfluid,
ℏ is the reduced Planck’s constant, g is the effective two-
dimensional two-body coupling between the bosons of
mass m, and V is an external potential. Relevant bulk
quantities are the speed of sound c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gρ∞=m
p

and the

healing length ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2=ð2mgρ∞Þ

p
, with ρ∞ as the super-

fluid number density at infinity. The healing length is the
length scale for the superfluid to recover its bulk density
value away from an obstacle; the speed of sound is the
speed of density or phase waves of scales larger than ξ.
To understand the superfluid’s dynamics in terms of

hydrodynamic variables, we make use of the Madelung
transformation ψ ¼ ffiffiffi

ρ
p

eiϕ. This recasts the GPE into
hydrodynamical equations for the conservation of mass:
ð∂ρ=∂tÞ þ∇ · ðρuÞ ¼ 0 and momentum:
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where the density and the velocity of the superfluid are
ρ ¼ jψ j2 and u ¼ ðℏ=mÞ∇ϕ, respectively. These equations
are equivalent to the barotropic Euler equations for an ideal
fluid, with the exception of the presence of the quantum
pressure term [the last in Eq. (2)], negligible at scales
larger than ξ. Circulation around a path C is given by
Γ ¼ H

C u · dl ¼ ℏΔϕ=m, where Δϕ is the increment in ϕ

around C: Δϕ is quantized in units of 2π and so is the
circulation, in units κ ¼ h=m. Quantized vortices are
defined as those points for which the density is zero and
the phase winds by 2π around them. For example, a vortex
can be seen in the phase field in Fig. 1(b); the same vortex
also appears circled in red in the density field of Fig. 1(c).
To mimic the motion of an airfoil we add a potential

V ¼ V½xðtÞ; y� moving with velocity _xðtÞ along the x
direction. Within the airfoil shape, the potential has a
constant value 50 times higher than the superfluid chemical
potential μ ¼ gρ∞, and decays to zero within a healing
length outside. At the beginning of each simulation the
potential is accelerated up to a final velocity, U∞ which is
then kept constant. See the Supplementary Material [18] for
details of the numerical scheme.
Soon after the airfoil is set into motion, a vortex is

nucleated from the trailing edge, much like the starting
vortex emitted in classical fluids. Our typical airfoil
nucleates more than once; the bottom of Fig. 2(a) displays
an example where three vortices are nucleated from its
trailing edge. The number of vortices emitted depends in
general on the airfoil’s terminal velocity U∞ and length L,
as shown in Fig. 2(b). While most of the simulated airfoils
reach a steady state postnucleation, in some cases, high-
lighted with octagons in Fig. 2(b), the airfoil begins
nucleating from its top after nucleating from the trailing
edge. Once begun, nucleation from the top continues for the
length of the simulation in a manner reminiscent of the
stalling behavior of a classical airfoil flow.
These results suggest that, just as for real fluids, an airfoil

in a superfluid builds circulation by vortex emission from its
trailing edge. A natural candidate for the mechanism under-
lying vortex emission is the onset of compressible effects at
the tail of the foil [4,7,19]. To estimate this we consider an
airfoil movingwith constant terminal velocityU∞. At length
scales larger than the healing length, quantum pressure is

FIG. 2. Vortex emission: (a) vortices nucleated at the tail and top of a Joukowski airfoil having α ¼ 15°, λ̃ ¼ 0.1. Here the width of the
foil scales like λ̃L (see the Supplemental Material [18]). The computational box size is 1024ξ × 1024ξ. Tail number reflected by color,
top nucleation by octagon mark. (b) Top three frames are snapshots of the density field for U∞ ¼ 0.260c and L ¼ 325ξ; here ntail ¼ 2.
Bottom frame has U∞ ¼ 0.345c and L ¼ 200ξ. This foil nucleates thrice from tail before nucleating uncontrollably from top; right
shows closer view of top vortices.
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negligible and the problem simplifies to a classical inviscid
compressible fluid one. The usual condition of compress-
ibility is that relative density variations must be larger than
relative speed variations: j∇ρj=ρ > j∇ · uj=u [3]. In the
steady flow and neglecting the quantum pressure, Eq. (2) is
nothing but the classical Bernoulli equation; ρðuÞ ¼ ρ∞þ
mðU2

∞ − u2Þ=2g, where ρ∞ is the far field density andU∞ is
the far field velocity in the foil’s frame. Plugging ρðuÞ into
the compressibility condition, one obtains that compress-
ibility effects arise when [20]:

3

2

u2

c2
−
1

2

U2
∞

c2
− 1 > 0; ð3Þ

i.e., when the local flow speed is greater than the local speed
of sound. In classical fluids, a dissipative shock is formed
where supersonic flow occurs. On the contrary, reaching the
compressibility condition in numerous superfluid models
leads to the shedding of vortices [7,21,22]. We use this
phenomenological criterion to predict the number of vor-
tices that will nucleate.
We proceed by approximating the velocity of the super-

fluidu around the foil by the velocity of an ideal fluid,uideal,
around a Joukowski foil of length L, terminal velocity U∞,
angle of attack α, with a circulation Γ. See the Supplemental

Material [18] for a comparison between this approximation
and the simulated flow field. For a circulation Γ ≠ ΓKJ, the
ideal flow speed juidealj increases sharply, eventually diverg-
ing as the sharp tail is approached.We expect this divergence
to be cutoff by quantum pressure effects arising in the
healing layer of size ξ. Following [23], we evaluateuideal at a
distance Aξ, where A is a factor of order unity, and predict
vortex nucleation whenever the velocity exceeds the com-
pressibility criterion of Eq. (3). As vortices are nucleated, the
value ofΓ increments accordingly by κ. AsΓ approachesΓKJ
the speeds at the tail decrease and nucleation from the tail
ends when enough vortices have been emitted to reduce
speeds at the tail below the compressibility condition in
Eq. (3). We stress that, unlike periodic nucleation of
oppositely signed vortices from symmetric obstacles as in
[4,6,7,10,20,24], all emitted vortices have the same sign.
Figure 3(a) shows excellent agreement between our simu-
lation data and this prediction for a value A ∼ 0.55, close to
the value 0.57 found by Rica et al. [23] for a sharp corner.
As tail nucleation decreases the speed at the tail, the

speed will increase over the top of the foil. Once an airfoil
has finished nucleating from its tail, if ideal flow speeds at a
distance of Aξ from the top are large enough to satisfy (3),
then we predict the airfoil will stall by continuously
emitting vortices from the top. The observed stall-like
behavior is marked by octagons in Fig. 3(a); its prediction
is represented by the boundary of the colored area. This
marks a radical difference between classical and superfluid
flight: stalling in the superfluid is driven by the flow speed
at the top of the foil. In viscous flow stalling is primarily a
function of α. See Fig. 4 [25].
Returning to tail nucleation, we make our prediction

of nucleation number analytic by appealing to a Taylor
expansion of uideal at small distance from the tail. Solving
the implicit equation (3) for Γ ¼ nκ, reveals that

FIG. 3. Nucleation predictions: (a) plot of tail and top nucle-
ation numbers in U∞ − L parameter space for α ¼ 15°. Predic-
tions are stripes in background, white area signifies predicted top
nucleation. All predictions used a cutoff distance of A ¼ 0.55ξ
from the foil. Simulation data are circled in white. (b) Values of
Δn2 calculated for each simulation in (a) with their average
plotted vs L=ξ. Error bars are standard deviation of the mean for
the U∞=c values in (a).

FIG. 4. Viscous vs superfluid flight/stall: (a) flight of foil in a
viscous fluid at a low angle of attack. (b) Stall at high angle of
attack. (c) Stall in a superfluid at low angle of attack. (d) Flight at
high angle of attack.
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ðΓKJ=κ − nÞ2 ≈ CðαÞL=ð3ξÞ ð4Þ

to first order [26] (see Supplemental Material [18] for
details). Here C is a constant of order one whose value
depends on the angle of attack α. If we define nKJ ≡ ΓKJ=κ
to be the number of vortices the foil would nucleate if it ac-
quired a classical circulation, we obtain Δn2≡ðnKJ−nÞ2¼
CðαÞL=3ξ. We verify this linear relationship by plotting
Δn2 vs L=ξ for our simulations, and find excellent agree-
ment shown in Fig. 3(b).
Having understood the vortex nucleation, we turn our

attention to the force experienced during this process,
namely the lift and drag. The similarity of classical and
superfluid vortex nucleation leads us to suspect that an
airfoil’s lift in a superfluid will be similar to that in a
classical fluid, and thus that the Kutta-Joukowski lift
theorem will nearly hold in a superfluid. To calculate the
kth component of the force exerted by the superfluid on the
airfoil one can integrate the stress-energy tensor

Tjk ¼ mρujuk þ
1

2
δjkgρ2 −

ℏ2

4m
ρ∂j∂k ln ρ ð5Þ

around any path S enclosing the airfoil [7]. The results of
this calculation for a particular airfoil’s simulation are
displayed in Fig. 5. We rescale the computed forces by
mρ∞U∞κ, which corresponds to a quantum of lift: the ideal
lift provided by a quantum of circulation.
The computed lift and drag are clearly not quantized. We

attribute this to transient effects, in particular to the buildup
of a dipolar density variation above and below the foil, as
can be seen in the inset of Fig. 5(a). As discussed in the
Supplemental Material [18] the density dipole and the
emitted and reflected density wave lead to contributions to
the lift and drag of the same order of magnitude as the two
spikes seen in Fig. 5(a). To remove these effects we proceed
as follows: far from the foil where speeds are low, we
expect that the compressible piece, uC, of the velocity field
will contain only density or sound waves. As detailed in the
Supplemental Material [18], the incompressible component
of the velocity field uI ≡ u − uC is simply the sum of the
ideal velocity field around the foil, uideal and the velocity
fields from the emitted vortices. Replacing u with uI and
using the density field prescribed by the steady Bernoulli
equation, we recalculate the lift and drag and plot it in
Fig. 5(b). Since this calculation differs from that of lift and
drag on an airfoil in ideal fluid only in that we allowed the
density ρðuIÞ to vary in space, it is not surprising that the
lift is now quantized and the drag is nearly zero.
In conclusionweanalyzed themechanisms responsible for

vortex nucleation from an airfoil and its consequent acquired
lift in a two-dimensional superfluid.On the one hand,we find
results reminiscent of the classical theory of airfoils, with the
emission of vortices at the trailing edge governed by the
elimination of the singularity predicted by inviscid flow. On
the other hand, a marked departure from classical flow is

found in the stalling behavior. Accelerated hydrofoils and
wings have recently been used to create vortices of arbitrary
shape in classical fluids [27,28], a technique which might
generalize to superfluids, offering a potentially powerful new
procedure in superfluidmanipulation, vortex generation, and
observation of quantized lift—a measurement originally
attempted in 4He by Craig and Pellam [29] to demonstrate
the quantization of circulation, later detected by Vinen using
a different setup [30]. Among the various superfluid exper-
imental realizations, some have recently started to address
questions on vortex nucleation and manipulation using
moving obstacles including cold atomic gases [22,24,31–
34] and quantum fluids of light [35,36]. Details of each
experimental realization will differ: 3D effects need to be
considered for non quasi-two-dimensional BECs, the rotons’
emission instead of vortex shedding might be important in
4He, and out-of-equilibrium exciton-polariton systems will
require modeling to consider intrinsic forcing and damping
terms. The time is right for superfluid flight.

FIG. 5. Evolution of lift and drag: (a) nondimensional lift
(dotted line) and drag (solid line) experienced by the airfoil
throughout simulation with U∞ ¼ 0.29c, L ¼ 325ξ, α ¼ 15.0°,
and λ̃ ¼ 0.1. Inset shows an exaggerated density field around the
airfoil. Included are the integration contours for computing the
force. (b) Nondimensional lift (dotted line) and drag (solid line)
experienced by the airfoil using uI and ρðuIÞ. A grid is overlaid to
demonstrate the quantization of the lift, the steps coincide with
vortex nucleation. Lift and drag were not computed on a contour
if a vortex was within 8ξ.

PHYSICAL REVIEW LETTERS 123, 154502 (2019)

154502-4



S. M. acknowledges REU support from the James
Franck and Enrico Fermi Institutes at the University of
Chicago. D. P. was supported by the London Mathematical
Society (LMS) Research in Pairs Scheme 4 Ref No. 41413
and the UK Engineering and Physical Sciences Research
Council (EPSRC) research Grant No. EP/P023770/1. M. O.
was supported by the Departments of Excellence Grant
awarded by the Italian Ministry of Education, University
and Research (MIUR) (L.232/2016) and by Progetto di
Ricerca d’Ateneo CSTO160004. W. T. M. I. was supported
by ARO Grant No. W911NF1810046 and the Packard
Foundation. We would like to acknowledge the University
of Chicago’s Research Computing Center where all the
simulations presented in this paper were performed; D.
Maestrini for having performed the first simulation of an
airfoil in a superfluid; M. Scheeler, S. Ettinger, and R.
Fishman for discussions in the early stages of this work.

*Present address: Department of Physics, 77 Massachusetts
Ave, Cambridge, Massachusetts 02139, USA.
swmusser@mit.edu

[1] D. J. Acheson, in Elementary Fluid Dynamics, 1st ed.
(Oxford University Press, Oxford, 1990), pp. 287–291.

[2] J. D. Anderson, Jr, Fundamentals of Aerodynamics, 5th ed.
(McGraw-Hill Education, New York, 2010).

[3] P. K. Kundu, I. M. Cohen, and D. R. Dowling, in Fluid
Mechanics, 6th ed. (Elsevier Inc., Netherlands, 2016),
pp. 820–879.

[4] T. Frisch, Y. Pomeau, and S. Rica, Phys. Rev. Lett. 69, 1644
(1992).

[5] C. Huepe and M.-E. Brachet, Physica (Amsterdam) 140D,
126 (2000).

[6] B. Jackson, J. F. McCann, and C. S. Adams, Phys. Rev. Lett.
80, 3903 (1998).

[7] T. Winiecki, B. Jackson, J. F. McCann, and C. S. Adams, J.
Phys. B 33, 4069 (2000).

[8] G.W. Stagg, N. G. Parker, and C. F. Barenghi, J. Phys. B 47,
095304 (2014).

[9] G.W. Stagg, A. J. Allen, C. F. Barenghi, and N. G. Parker, J.
Phys. Conf. Ser. 594, 012044 (2015).

[10] T. Winiecki and C. S. Adams, Europhys. Lett. 52, 257
(2000).

[11] C. Nore, C. Huepe, and M. E. Brachet, Phys. Rev. Lett. 84,
2191 (2000).

[12] K. Sasaki, N. Suzuki, and H. Saito, Phys. Rev. Lett. 104,
150404 (2010).

[13] G. Stagg, N. Parker, and C. Barenghi, Phys. Rev. Lett. 118,
135301 (2017).

[14] D. Proment, M. Onorato, and C. F. Barenghi, Phys. Rev. E
85, 036306 (2012).

[15] D. Kleckner, L. H. Kauffman, and W. T. M. Irvine, Nat.
Phys. 12, 650 (2016).

[16] C. Nore, M. Abid, and M. E. Brachet, Phys. Fluids 9, 2644
(1997).

[17] M. Kobayashi and M. Tsubota, Phys. Rev. Lett. 94, 065302
(2005).

[18] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.123.154502 for discus-
sion of our analytic estimate of nucleation number, details of
our numerical integration, and a description of our process
for removing sound waves and estimating their magnitude.

[19] N. G. Berloff and C. F. Barenghi, Phys. Rev. Lett. 93,
090401 (2004).

[20] S. Rica, in Quantized Vortex Dynamics and Superfluid
Turbulence, Lecture Notes in Physics Vol. 571, edited by
C. F. Barenghi, R. J. Donnelly, and W. F. Vinen (Springer-
Verlag, Berlin, Heidelberg, 2001), pp. 258–267.

[21] G. A. El, A. M. Kamchatnov, V. V. Khodorovskii, E. S.
Annibale, and A. Gammal, Phys. Rev. E 80, 046317 (2009).

[22] M. E. Mossman, M. A. Hoefer, K. Julien, P. G. Kevrekidis,
and P. Engels, Nat. Commun. 9, 4665 (2018).

[23] S. Rica and Y. Pomeau, in Instabilities and Nonequilibrium
Structures IV, Mathematics and Its Applications, 1st ed.
Vol. 267 (Springer, Dordrecht, 1993), pp. 351–364.

[24] W. J. Kwon, J. H. Kim, S. W. Seo, and Y. Shin, Phys. Rev.
Lett. 117, 245301 (2016).

[25] These images are from the National Committee for Fluid
Mechanics Films: Vorticity, Part 2 and Fundamentals of
Boundary Layers, copyright 1961 Education Development
Center, Inc. Used with permission with all other rights
reserved.

[26] For a better estimation of the healing layer one should in
principle extend the expansion to higher order, as suggested
for instance in [5] for a cylinder uniformly moving in a
superfluid.

[27] D. Kleckner and W. T. Irvine, Nat. Phys. 9, 253 (2013).
[28] M.W. Scheeler, W.M. van Rees, H. Kedia, D. Kleckner,

and W. T. Irvine, Science 357, 487 (2017).
[29] P. P. Craig and J. R. Pellam, Phys. Rev. 108, 1109 (1957).
[30] W. F. Vinen, Proc. R. Soc. A 260, 218 (1961).
[31] N. Meyer, H. Proud, M. Perea-Ortiz, C. O’Neale, M.

Baumert, M. Holynski, J. Kronjger, G. Barontini, and K.
Bongs, Phys. Rev. Lett. 119, 150403 (2017).

[32] A. Burchianti, F. Scazza, A. Amico, G. Valtolina, J. Seman,
C. Fort, M. Zaccanti, M. Inguscio, and G. Roati, Phys. Rev.
Lett. 120, 025302 (2018).

[33] J. W. Park, B. Ko, and Y. Shin, Phys. Rev. Lett. 121, 225301
(2018).

[34] C. Michel, O. Boughdad, M. Albert, P.-É. Larré, and M.
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