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Geometric background charge: dislocations on capillary bridges
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Recent experiments have shown that colloidal crystals confined to weakly curved capillary bridges

introduce groups of dislocations organized into ‘pleats’ as means to relieve the stress caused by the

Gaussian curvature of the surface. We consider the onset of this curvature-screening mechanism, by

examining the energetics of isolated dislocations and interstitials on capillary bridges with free

boundaries. The boundary provides an essential contribution to the problem, akin to a background

charge that ‘‘neutralizes’’ the unbalanced integrated curvature of the surface. This makes it favorable

for topologically neutral dislocations and groups of dislocations – rather than topologically charged

disclinations and scars – to relieve the stress caused by the unbalanced Gaussian curvature of the

surface. This effect applies to any crystal on a surface with non-vanishing integrated Gaussian

curvature and stress-free boundary conditions. We corroborate the analytic results by numerically

computing the energetics of a defective lattice of springs confined to surfaces with weak positive and

negative curvatures.
Several natural and man-made mechanical systems can be viewed

as two-dimensional curved crystals. Examples range from archi-

tectural structures,1 viral shells2 to colloidosomes,3 an intriguing

device composed of colloidal particles coating spherical fluid

droplets, which holds potential for encapsulation and drug

delivery. The theoretical challenge to the understanding of the

mechanics of these systems originates from the fact that the two-

dimensional crystal order is frustrated by the Gaussian curvature

of the substrate. When a crystal lattice is draped over a curved

substrate, its bonds necessarily stretch or compress to accom-

modate the underlying curvature.4,5 This phenomenon, known as

geometric frustration, arises from the competition between local

particle interactions, that favor an ordered lattice structure, and

geometric constraints that prevent local order from filling the

space.6–16 An intriguing connection has recently emerged between

the frustrated order of twisted filament assemblies and the

apparently distinct problem of curved crystalline order.17

A striking experimental realization of curved space crystal-

lography is provided by colloidal monolayers confined to

spherical droplets3,19 and on capillary bridges of varying positive

or negative curvatures;1 see Fig. 1a. In both cases, the curvature-

generated mechanical strains are screened by defects in the

crystal lattice, especially dislocations or disclinations (see Fig. 1b

and c).

In a spherical crystal, there must be an excess of twelve five-fold

(or positive) disclinations simply because you cannot tile a sphere

with hexagons, as demonstrated by a classic soccer ball. The
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presence of these twelve excess disclinations is dictated by

topology; energetics only fixes their positions at the vertexes of an

icosahedron inscribed in the sphere. The experimental and theo-

retical studies of ref. 3 and 7 have demonstrated that introducing

additional grain boundary ‘‘scars’’ emanating from each of the

twelve positive disclinations becomes energetically favourable on

large spheres, even if they are not required by topology.

Defect nucleation on curved capillary bridges shaped as cat-

enoids or barrels works differently from that on the sphere: there

are no topological requirements that force isolated disclinations

in the ground state. Instead defects in the form of isolated

dislocations are first nucleated to screen the curvature. Do

‘‘scars’’ exist on these surfaces even without the isolated dis-

clinations from which they emanate in spherical crystals? Recent

experiments show clear evidence for the existence of finite length

low-angle grain boundaries that do not originate from free dis-

clinations.1 These defect structures play an analogous role to

form pleats in fabrics – they accommodate for curvature by

inserting and terminating extra rows of particles.

The building blocks of ‘pleats’ are dislocations. In this article

we present an analytical and numerical study of the energetics of

dislocations on capillary bridges of positive and negative

Gaussian curvatures. Our results highlight the ability of dislo-

cations to screen curvatures and provide an accurate estimate of

the forces acting on them as a result of the simultaneous presence

of curvatures and free boundaries. As we shall see, of crucial

importance is a subtle geometric force exerted on an isolated

dislocation by a neutralizing ‘‘background charge’’ that counter-

balances the effect of a non-vanishing integrated Gaussian

curvature of the surface, thereby enforcing the stress-free

boundary condition.9
Soft Matter, 2012, 8, 10123–10129 | 10123
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Fig. 1 (a) Profiles of capillary bridges coloured by the magnitude of the

Gaussian curvature on their surface (eqn (9)). For the weakly curved

capillary bridges shown here, the curvature G � 1/RzRf is approximately

uniformly negative or positive. Rz and Rf are the radii of curvature in the

vertical and azimuthal directions respectively. (b) Disclinations in a

hexagonal lattice appear as five or seven-fold coordinated particles and

carry an angular topological charge that can compensate the angular

deficit created by the Gaussian curvature. (c) Dislocations in a hexagonal

lattice appear as dipoles of disclinations. The topological charge of dis-

clinations appears in eqn (2) as a source of geometric stress on the same

footing as the Gaussian curvature, suggesting a direct defect–curvature

coupling, with five (or seven)-fold disclinations coupled with a positive

(or negative) curvature. The energetics of disclinations are however more

closely analogous to those of an electric charge that interacts with a

geometric ‘charge density’ r, shown in panel (d). (d) r is the solution to a

Laplacian equation (eqn (3)) with G as its source and an additional

constant term rH that originates from the stress-free boundary condition.

In the case of surfaces with unscreened curvature and free boundaries,

this term is akin to a background charge that neutralizes the unbalanced

integrated curvature of the surface and leads to an energetic preference

for the appearance of dislocations (dipoles) over disclinations, despite the

uniform Gaussian curvature.
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The elastic energy of a curved crystalline monolayer draped on

a curved substrate can be written as4,5

F ¼ 1

2Y

ð
dA

�
V2c

�2
; (1)

where Y is the Young’s modulus and c(x) is the Airy stress

function that satisfies the biharmonic equation sourced by the

Gaussian curvature and the disclinations

1

Y
V4cðxÞ ¼

X
a

qadðx� xaÞ � GðxÞ; (2)

where qa and xa are the disclination charges and positions

respectively.

The energetics of these elastic systems can be mapped onto a

simpler electrostatic problem. Denote by cG(x) the solution of

eqn (2) in the absence of defects. The biharmonic equation can be

solved in two steps.9,13 First introduce an auxiliary function r(x)

that satisfies:

V2r(x) ¼ G(x). (3)
10124 | Soft Matter, 2012, 8, 10123–10129
The second step is to set r(x) as a source in the Poisson

equation for cG(x)

1

Y
V2cGðxÞ ¼ �ðrðxÞ � rHðxÞÞ; (4)

where rH(x) is a harmonic function that we will use to satisfy the

boundary condition of vanishing stress at the edge of the capil-

lary bridge.9,13 Note that the geometric charge density r(x) is

analogous to a smeared out electrostatic charge that, as we shall

see, interacts with the defects.

In order to enforce the boundary condition, we need to

determine the stress tensor sij(x) in an arbitrary set of curvilinear

coordinates x ¼ {x1, x2} which can be expressed in terms of c(z)

and the metric tensor gij as:
18

s11 ¼ s11
g11

s22 ¼ s22
g22

s12 ¼ s12ffiffiffiffiffiffiffiffiffiffiffiffi
g11g22

p ; (5)

where

sij h gmngjpgimg
pr(vnvrc(z) � Gq

nrvqc(z)). (6)

The Christoffel symbols are denoted by Gk
ij and gij ¼ 3ij=

ffiffiffi
g

p
is

the covariant antisymmetric tensor, with the determinant of the

metric g ¼ g11g22.

To facilitate comparison with our experimental studies, we

focus on capillary bridges that are surfaces of revolution whose

radius r is approximately given as a function of the height z by:

rðzÞ ¼ Rf þ Rz � Rz cosh

�
z

Rz

�
; (7)

where Rf and Rz denote the radii of curvature in the azimuthal,

f, and z directions respectively. This choice describes both the

catenoids and barrels of Fig. 1a. Rf is always positive, while Rz is

positive on barrels and negative on catenoids. In both cases, the

resulting metric reads:

ds2 ¼ cosh

�
z

Rz

�2
dz2 þ

�
Rf þ Rz � Rz cosh

�
z

Rz

��2

df2 (8)

We assume that the total height of our catenoids and barrels is

equal to H, so that �H

2
\z\þH

2
. The Gaussian curvature of

these surfaces is given by:

GðzÞ ¼
sech3

�
z

Rz

�

RzðRf � RzÞ þ R2
z cosh

�
z

Rz

� (9)

For the capillary bridges, we can calculate szz(z) and sff(z)

from eqn (5) and (6) giving:

szzðzÞ ¼
sech

�
z

Rz

�
tanh

�
z

Rz

�

ðRf � RzÞ þ Rz cosh

�
z

Rz

� vzc; (10)

and

sffðzÞ ¼ 1

cosh2

�
z

Rz

�
�
vz

2c� 1

Rz

tanh

�
z

Rz

�
vzc

�
: (11)

The sign convention we adopt for sij is that the stress is

negative if the material element is compressed and positive if it is
This journal is ª The Royal Society of Chemistry 2012
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stretched. Intuitively we expect that when zz 0, near the neck of

the catenoid (barrel), the applied stress is negative (positive).

As we shall see, defect nucleation first occurs in the regime of

small curvature H/Rz � 1, for which the capillary bridge can be

viewed as a weakly deformed cylinder of radius approximately

equal to Rf and height H. In this regime, we can Taylor expand

all previous expressions in powers of z/RZ to find a closed-form

solution for cG(x) in eqn (4), subject to the free boundary

condition9 sGzz(z ¼ �H/2) ¼ 0. The result reads:

cGðzÞ ¼ � Y

24RzRf

�
z4 �H2z2

2
þH4

16

�
; (12)

where the last (constant) term, which is of no physical conse-

quence, was chosen to set cG ¼ 0 on the boundary. Upon plug-

ging eqn (29) into eqn (10) and (11), we find (to leading order in

H/Rz) that the stress sGzz z 0 while sGffz
YH2

24RzRf

near the neck

z z 0. These results mean that there is spring compression for

catenoids (Rz < 0 and sGff < 0) and stretching for barrels (Rz <

0 and sGff > 0). Note that the azimuthal component of the stress

of geometric frustration, sGff(z), changes sign for z.H=
ffiffiffiffiffi
12

p
, a

fact of crucial importance to determine the geometric force

exerted on dislocations by the curvature of the capillary

bridge.

According to the standard elasticity theory, a dislocation in an

external stress field, sij(x), experiences a Peach–Koehler force,
~f (x), given by20

fk(x) ¼ 3kjbisij(x), (13)

where ~b is the Burgers vector of the dislocation. Similarly, a

dislocation introduced into the curved 2D crystal will experience

a Peach–Koehler force as a result of the pre-existing stress field of

geometric frustration sGij (x). If we choose ~b along its minimum-

energy orientation for a catenoid (azimuthal, corresponding to a

dislocation having its 7-fold defect closer to the neck), we obtain

a Peach–Koehler force fz(z) that points in the z direction and has

a magnitude given by:

fz(z) ¼ �bsGff(z). (14)

An explicit formula for fz(z) on capillary bridges is obtained by

plugging sff z vz
2cG(z) into eqn (14) with the result

fzðzÞz� Yb

2RzRf

�
H2

12
� z2

�
: (15)

For a dislocation with its negative disclination facing the neck

of a capillary bridge with negative curvature, the force is repul-

sive (or attractive), if it is located at a distance z smaller (or

greater) than H=
ffiffiffiffiffi
12

p
. For a barrel, the prefactor Rz switches its

sign; hence the minimum energy orientation for the dislocation is

obtained for b < 0, e.g., the positive disclination is facing the neck.

The corresponding potential is obtained upon integration

along the z direction (ignoring higher order metric effects) with

the result

fðzÞz� Yb

6RzRf

�
z3 �H2

4
z

�
: (16)
This journal is ª The Royal Society of Chemistry 2012
Around the neck z$ 0, the second term in eqn (16) dominates

and the potential fðzÞz YbH2

24RzRf

z is repulsive for the catenoid

(Fig. 1d) and attractive for the barrel (Fig. 1c). For z < 0 the

dislocation acquires the opposite Burgers vector and the poten-

tial flips its sign as expected given that the disclination closer to

the neck has the opposite sign now.The second term in eqn (16) is

obtained by fixing the boundary conditions and can be traced all

the way to the additional source rH in the Poisson equation

(eqn (4)). It is a contribution to the geometric force experienced

by the dislocation that is linear in the Burgers vector and it is

induced by the simultaneous presence of both the Gaussian

curvature and the boundary. It should not be confused with the

interaction of the dislocation with its own image which would be

present also on a finite cylindrical patch. In the electrostatic

analogy, the source rH subtracted from r(x) can be viewed as a

neutralizing ‘‘background charge’’ which ensures that the area

integral of the right hand side of eqn (4) vanishes. This condition

forces the radial stress to vanish at the boundary.

In order to test our analysis, we performed constrained energy

minimizations of a hexagonal lattice of harmonic springs with

the dislocation fixed at position z from the center of a patch of a

catenoid (Fig. 2a) and a barrel (Fig. 2b). The gray hollow dia-

monds represent the energy of a patch containing a dislocation

at different z on a cylinder of the same size as the catenoid and

barrel. It is very flat until the dislocation is placed close to the

boundary and starts being attracted by its own image. This flat

space contribution to the energetics purely depends on the

presence of a boundary. We now subtract from the total energy

(black hollow squares) the energy of the same patch in flat space

(gray hollow diamonds) and the energy of geometric frustration

of an un-defected patch (black solid line) and obtain (red hollow

circles) for both catenoids and barrels the geometric potential,

in agreement (red solid line) with that calculated in eqn (16).

The agreement with our analytical result (continuous line)

that captures all curvature contributions to the energetics is

very good.

Fig. 3b shows a systematic comparison of our numerical

results (symbols) with the theoretical predictions (continuous

lines) based on eqn (16) for the z > 0 portion of the geometric

potential of a family of catenoids with increasing curvature.

Fig. 3a compares a plot of the minimum of f(z) vs. G ¼ 1/RzRf

(the Gaussian curvature at the neck) determined numerically

with the theoretical prediction. The agreement is very good,

corroborating our analysis for a wider range of curvature than

expected on the basis of our perturbative treatment that describes

catenoids and barrels as small deformations from a cylindrical

geometry. The intuitive reason why the minimum of f(z) is

located at zzH=
ffiffiffiffiffi
12

p
, where sff changes sign, can be explained

as follows. If the negative (or positive) disclination is facing the

neck of the catenoid (or barrel), the extra row of atoms

emanating from the dislocation is directed towards the z < zmin

(or z > zmin) portion of the crystal that is stretched – this choice

ensures that the elastic energy is minimized.

We can now use an electrostatic analogy to first determine the

geometric potential of a tight dipole composed of a positive and a

negative disclination and then verify that it indeed matches our

geometric potential for a dislocation obtained analytically in eqn
Soft Matter, 2012, 8, 10123–10129 | 10125
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Fig. 2 Energy (c and d) of a defective lattice of springs of unit rest length and unit spring constant, constrained to lie on the surface of capillary bridges

(a and b). A dislocation, polarized so that its five-fold particle lies above its seven-fold particle, was inserted in the crystalline patch at positions of

varying heights in order to map out the potential felt by an isolated dislocation. The minimum energy of each configuration was found using a conjugate-

gradient minimization similar to that used in ref. 9 and is plotted (hollow squares in c (d)) for the capillary bridges shown in b (a). The flat-space energies

(grey diamonds in c (d)) and energy of geometric frustration (black solid line in c (d)) of an un-defected patch are subtracted in (c) and (d) to reveal (red

hollow circles) the predicted geometric potential (solid red line).
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(16) and numerically in Fig. 3. The energy of N disclinations

labelled by the index a and with ‘‘topological charges’’	
qa ¼ � 2p

6



reads7,13

F ¼ Y

2

ð
dA

ð
dA

0
N ðxÞ 1

D2
xx

0
N
�
x

0�
: (17)

where
1

D2
xx

0
is the Green’s function of the biharmonic operator.

The source N (x) is given by

N ðxÞ ¼
XN
a¼1

qadðx; xaÞ � GðxÞ: (18)

Eqn (17) implies that the potential U(z), experienced by an

isolated disclination on a curved substrate with the Gaussian

curvature G(z), satisfies the following biharmonic equation

V4U(z) ¼ �G(z), (19)

and is therefore proportional to the Airy stress function cG(z).

The geometric potential of a dislocation can be constructed by

calculating the energy of a disclination dipole whose moment

qdi ¼ 3ijbj is a lattice vector perpendicular to ~b that connects

the two points of 5 and 7-fold symmetry along the surface.

Upon taking the product of d times the gradient in the z direction

of the disclination energy qU(z), including the factor
10126 | Soft Matter, 2012, 8, 10123–10129
ffiffiffiffiffiffi
gzz

p ¼ coshðz=rzÞ, we obtain the potential f(z) and upon taking

a second gradient the geometric force fz(z)

fzðzÞ ¼ � 1ffiffiffiffiffiffi
gzz

p vz

�
qdffiffiffiffiffiffi
gzz

p vzUðzÞ
�

(20)

Once the identification U(z) ¼ cG(z) and qd ¼ b is made, eqn

(20) becomes equivalent to eqn (14). The energy qU(z) of a dis-

clination with topological charge q is readily obtained by solving

the Poisson equation V2U(z) ¼ �(r(z) � rH(z)) including the

boundary term, see eqn (4). Positive (or negative) disclinations

are repelled (or attracted) from the neck of the catenoid (or

barrel) at z z 0 by the integrated background source r(z) �
rH(z).

We can also determine the geometric potential I(z) of an

interstitial as the product of the local area expansion, dA,

generated by the interstitial, times the local pressure

p(x) ¼ �V2cG(x) generated by the curvature. The pressure (or

equivalently the interstitial geometric potential) is propor-

tional to the right hand-side of eqn (4), e.g., it is equal to

the source of the Poisson equation including the crucial

boundary term rH(x). To leading order in the surface defor-

mation we find

IðzÞ � Yb2

2RzRf

�
z2 �H2

12

�
(21)

where we assumed dA � b2.
This journal is ª The Royal Society of Chemistry 2012
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Fig. 3 Geometric potential for an isolated dislocation on surfaces of

increasing Gaussian curvature, obtained in a similar way as the curves

shown in Fig. 2. The scaling of the minimum energy as a function of the

Gaussian curvature at the neck G ¼ 1/RzRf, is shown in (a), while a

comparison of predicted geometric potentials (dashed lines) and energies

found numerically (solid rhombi) is shown in (b).

Fig. 4 Numerically calculated energy (black hollow circles) and pre-

dicted energy (dashed line) of an interstitial particle on a capillary bridge

having negative (a) and positive (b) curvatures. The energy of an inter-

stitial is given by r(z)b2 and therefore provides a means to directly probe

the geometric potential r(z) on a surface.
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The analytical expression for I(z) derived in eqn (21) is plotted

as a continuous line and compared to numerical results for cat-

enoids and barrels in Fig. 4. Note that the only effect of switching

the sign of the Gaussian curvature in going from catenoids to

barrels is the relative sign of Rz and Rf. This determines the

overall negative (positive) pre-factor of the parabolic potential

for catenoids (or barrels) in eqn (21).

The numerical data shown in Fig. 4 are obtained from con-

strained energy minimization algorithms similar to the ones used

to determine the dislocation potential. As shown before, we first

determine numerically the interaction of the interstitial with its

own image on a flat cylinder, and then subtract it from the total

energy to isolate I(z) for a catenoid (panel a) and a barrel (panel

b). The agreement is very good confirming the intuitive expec-

tation that interstitials are repelled (or attracted) from the neck

of catenoids (or barrels) where the frustrated lattice is

compressed (or stretched). Exactly the opposite trend is expected

for vacancies which represent an area deficit.
This journal is ª The Royal Society of Chemistry 2012
As we have illustrated, charge neutral dislocations can screen

the Gaussian curvature of the capillary bridges as effectively as

disclinations. We can estimate the threshold integrated Gaussian

curvature required to make dislocation nucleation energetically

favorable. On capillary bridges, this instability is a precursor to

pleating: the formation of charge neutral grain boundary scars

observed in the experiments of ref. 1. In the following, we capture

the onset of this instability by calculating the energetics of a pair

of dislocations with opposite Burgers vectors oriented so that the

7s face the neck of the catenoid.

Upon using eqn (14), the difference in energy, DE(z), between

the curved crystal with the two dislocations at positions �z and

the curved crystal without any defects is readily estimated

DEðzÞ ¼ Yb2

4p
ln

�
2z

b

�
þ 2b

ðz

0

sG
ff

�
z
0�
dz

0
: (22)

The first term is the flat-space logarithmic interaction energy

between two dislocations being pulled apart from the neck

which approximates the interaction between dislocations to zero

order. The second term accounts for the interaction of each of

the two dislocations with the curvature. The energetic condition

for the nucleation of a pair of oppositely oriented dislocations is

DE(z) < 0.

Upon plugging sGff into eqn (22) we obtain for DE z 0:���� p

9
ffiffiffi
3

p H2

RfRz

����z b

H
ln

�
H

b

�
; (23)

The Burgers vector b is typically of the order of the lattice

spacing a leading after simple rearrangements to

����2pRfH

RfRz

����z a

H
ln

�
H

a

�
18

ffiffiffi
3

p
Rf

H
: (24)

The energetic condition can now be rewritten as a geometric

condition on the threshold integrated Gaussian curvature:

����
ð
GdA

����z a

H
ln

�
H

a

�
18

ffiffiffi
3

p
Rf

H
: (25)
Soft Matter, 2012, 8, 10123–10129 | 10127
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Note that for large samples the threshold integrated curvature

is lowered: the instability is not suppressed but rather enhan-

ced.The geometric criterion for the nucleation of a dislocation

pair, derived in eqn (25), is qualitatively similar to heuristic

estimates of the onset of pleating. Both instabilities are triggered

by the energetic advantage derived from adding (or subtracting)

rows of atoms where the curved crystal is most stretched (or

compressed). Nucleating both dislocation pairs or pleats is

associated with an energetic penalty that diverges slowly as the

logarithm of the system size. In contrast, the energy Ef of a

stretched or compressed curved crystal characterized by a bond

angle rotation q reads

Ef � Yq2H2. (26)

Note that it diverges quadratically with the size of the system.

A single pleat is essentially a low angle grain boundary of finite

length H whose energy can be estimated as:20

Ep � �YbHqln q. (27)

As long as the curvature induced angular stretching (or

compression) q is small, it is energetically advantageous to stretch

(or compress) bonds in the crystal rather than adding extra rows

of atoms because Ef � q2 < Ep.

Pleating becomes energetically favorable above a critical qc

qc � � b

H
ln qc: (28)

Eqn (28) can be solved self-consistently. Neglecting doubly

logarithmic corrections leads to

qc � b

H
ln

�
H

b

�
: (29)

The curvature induced angular stretching (or compression) is

approximately equal to the integrated Gaussian curvature. This

gives the criterion ����
ð
GdA

���� � a

H
ln

�
H

a

�
; (30)

where the Burgers vector is approximately one lattice spacing

long. Note that eqn (30) provides an estimate of the same order

as eqn (25).

It is interesting to compare our estimate of the threshold

integrated curvature necessary to trigger the dislocation

unbinding instability (see eqn (30)) to the corresponding estimate

of the disclination nucleation instability. The latter occurs at a

much higher integrated curvature when the energy of geometric

frustration emerging from the angular deficit in eqn (27) is

balanced by the energy cost of nucleating a disclination which

also diverges quadratically with the system size. Following the

same logic, presented in detail for the dislocation case, one

obtains a heuristic criterion for the onset of the disclination

nucleation instability that reads:

|
Ð
GdA| � q, (31)

where the total disclination charge is denoted by q and numerical

or logarithmic prefactors are neglected. The crucial qualitative
10128 | Soft Matter, 2012, 8, 10123–10129
difference between the two cases stems from the fact that the

right hand side of eqn (30) actually vanishes in the continuum

limit a/H / 0, while the right hand side of eqn (31) stays finite.

Hence, the threshold integrated Gaussian curvature necessary

for the nucleation of a dislocation (pair) is vanishingly small

while the threshold for nucleating a single disclination is always

finite. In practice, when the substrate deformation become so

large to support the nucleation of unbound disclinations, several

dislocations, possible within pleats, will be already present to

partially screen the curvature. Therefore the concept of nucle-

ating a single disclination in the absence of any dislocations in the

background is an idealization.

In this article, we study the elastic deformation of a two-

dimensional crystal, when confined to a curved substrate, shaped

as a capillary bridge of positive (barrels) or negative (catenoids)

Gaussian curvature. If one thinks of the two-dimensional crystal

as a hexagonal lattice of springs and balls, the effect of the

curvature will be to necessarily stretch or compress the springs.

Beyond a threshold integrated curvature, deformation of the

springs will not be enough and topological defects will be

nucleated first in the form of (groups of) dislocations and then

disclinations. Our work demonstrates that continuum elasticity

can capture the energetics of these curvature induced defects on

curved capillary bridges with free boundaries, as illustrated by

the favorable comparison between our analytical results and

numerical energy minimizations of a discrete spring model.

Crucial to this agreement is the inclusion of a subtle geometric

interaction between defects and a neutralizing background

charge generated by the boundary. Our results are in agreement

with the experimental findings of ref. 1 and show that charge

neutral pleats or dislocation pairs are more effective in screening

the Gaussian curvature on weakly curved capillary bridges than

disclinations. We also estimate the onset of the disclination

nucleation instability and confirm that it occurs when the inte-

grated Gaussian curvature of the bridge is much higher than the

corresponding threshold for dislocation nucleation.
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