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The conjecture that knottedness is a fundamental conserved physical quantity has a long history
in fluid mechanics. In ideal flows, the conservation of helicity arises because the topology of vortex
lines is invariant. In real flows (including superfluids), the large scale topology of vortex tubes
changes through ‘reconnection’ events, so helicity can only be conserved by transferring to different
spatial scales. By measuring the behavior of vortex knots and links in viscous fluid experiments and
quantum fluid simulations, we identify a mechanism for helicity scale transfer through reconnections,
allowing helicity to be conserved even when the topology is not. We also describe a new method
for quantifying helicity across scales, and discuss the transfer of helicity to sub-core local twisting
where it may ultimately be dissipated. Remarkably, we find that topology-changing reconnections
proceed in a manner than tends to conserve helicity, suggesting that it plays a fundamental role in
real fluids, from turbulent viscous flows to plasmas.

In addition to energy, momentum and angular momen-
tum, ideal (inviscid) fluids have an additional conserved
quantity – helicity (eqn. 1) – which measures the linking
and knotting of the vortex lines composing a flow [1]. For
an ideal fluid, the conservation of helicity is a direct con-
sequence of the Helmholtz laws of vortex motion, which
both forbid vortex lines from ever crossing and preserve
the flux of vorticity, making it impossible for linked or
knotted vortices to ever untie [1, 2]. Since conservation
laws are of fundamental importance in understanding
flows, the question of whether this topological conser-
vation law extends to real, dissipative systems is of clear
and considerable interest. The general importance of this
question is further underscored by the recent and growing
impact knots and links are having across a range of fields,
including plasmas [3, 4], liquid crystals [5, 6], optical [7],
electromagnetic [8] and biological structures [9–11], cos-
mic strings [12, 13] and beyond [14]. Determining if and
how helicity is conserved in the presence of dissipation
is therefore paramount in understanding the fundamen-
tal dynamics of real fluids and the connections between
tangled fields across systems.

The robustness of helicity conservation in real fluids is
unclear because dissipation allows the topology of field
lines to change. For example, in viscous flows vortic-
ity will diffuse, allowing nearby vortex tubes to ‘recon-
nect’ (Fig. 1), creating or destroying the topological link-
ing of vortices. This behavior is not unique to classi-
cal fluids: analogous reconnection events have also been
experimentally observed in superfluids [15] and coronal
loops of plasma on the surface of the sun [16]. In gen-
eral, these observed reconnection events exhibit diver-
gent, non-linear dynamics which makes it difficult to re-
solve these questions theoretically [4, 17, 18]. On the
other hand, experimental tests of helicity conservation

have been hindered by the lack of techniques to create
vortices with topological structure. Thanks to a recent
advance [19], this is finally possible.

While on the one hand the diffusion of vorticity en-
ables reconnections that remove topology, it also guaran-
tees that vortex tubes have finite thickness. Finite thick-
ness allows for internal structure – like the filaments that
make up a strand of yarn – which may also store helic-
ity [20–22]. When topology changes through a reconnec-
tion event, helicity conservation is therefore dependent
on whether and how global linking is transferred to this
interior structure.

By performing experiments on linked and knotted vor-
tices in water, as well as numerical simulations of Bose-
Einstein condensates (a compressible superfluid [23]) and
Biot-Savart vortex evolution, we investigate the conser-
vation of helicity, in so far as it can be inferred from the
shape of the reconnecting flux tubes. We report a system-
independent geometric mechanism for helicity conserva-
tion through a reconnection. We also describe a new
method for quantifying the storage of helicity on differ-
ent spatial scales of a thin-core vortex: a ‘helistogram’.
Using this analysis technique, we find that self-induced
vortex stretching generates a rich structure in the flow of
helicity, driving both vortex reconnections and geometric
deformations that transport helicity between scales.

The hydrodynamic helicity is defined in terms of the
fluid flow field, u(r):

H =

∫
u · ω dV, (1)

where the vorticity is ω(r) = ∇×u(r). The connection
between this volumetric representation and the linking
between vortex tubes was first noted by Moffatt [1], who
showed that for flows consisting of thin, closed vortex
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FIG. 1: (A) A sketch of the evolution of vortex tube topology in ideal (Euler) and viscous (Navier-Stokes) flow. Dissipative
flows allow for reconnections of vortex tubes (highlighted in blue), and so topology is not conserved. (B) A diagram of a single
reconnection event. (C) Two frames of a 3D reconstruction of a vortex reconnection in experiment, which turns an initially
linked pair of rings into a single twisted ring. (D) A close-up view of the reconnection in C. (E) Vortex ‘tubes’ may contain
internal structure even when their centerline is straight, leading to the storage of helicity as twist. (F) If the vortex tube
‘writhes’, it may store helicity even when the topology of the centerline is trivial.

tubes Cn, with compact internal structure, the helicity is
equivalently given by:

H =
∑
i,j

ΓiΓj
1

4π

∮
Ci

∮
Cj

xi − xj
|xi − xj |2

· (dxi × dxj) (2)

=
∑
i6=j

ΓiΓj Lij +
∑
i

Γ2
i Wri. (3)

where Γi and xi correspond to the circulation (vorticity
flux) and center-line path for vortex tube Ci, and we have
assumed that each vortex-tube is locally untwisted and
non-intersecting. The linking number, Lij , is a topolog-
ical invariant which measures the signed integer number
of times a pair of closed tubes is wrapped around one
another. The writhe, Wri, is an analogous quantity for a
single path, which includes contributions from both knot-
ting and helix-like coiling, and in general is not integer.

If a vortex tube has finite thickness, the vortex ‘bundle’
(with total circulation Γ) can be mathematically decom-
posed into ‘filaments’ (each with Γfilament = Γ/N) that
describe its internal structure. As the number of fila-
ments increases, N →∞, the writhe contribution to the
helicity is seen to vanish, replaced by the linking between
individual filaments inside the bundle [21]. Thus a vortex
tube whose internal filaments are linked stores topology
even though its centerline is topologically trivial. For ex-
ample, in a vortex loop whose centerline has no torsion,
such as a circle, internal topology can be achieved by uni-
formly twisting the vortex sub-tubes around each other
(Fig. 1E). Conversely, the same topology can be achieved
without internal twisting if instead the vortex bundle

writhes in space (Fig. 1F). In this sense, the writhe is a
measure for the internal linking of vortex filaments for a
locally untwisted bundle, providing valuable information
about the internal topology even when the fine structure
can not be directly resolved. Though total helicity is
agnostic to how it is encoded in the geometry of the vor-
tex lines, it is useful to distinguish these three geometric
contributions: centerline linking L, centerline coiling (or
writhing) Wr and local twist Tw. The latter cannot be
resolved without looking in the vortex core, so we define
the centerline helicity, Hc/Γ2 =

∑
Lij +

∑
Wri, which

we measure directly from the vortex centerline geometry.

Recently, elementary vortex knots and links have been
found to be intrinsically unstable in experimental vis-
cous fluids [19] and simulations of Bose-Einstein con-
densates (BECs) [24]. In both cases, thin-core vortices
are seen to spontaneously deform towards a series of lo-
cal reconnections that untie knots and disconnect linked
rings. Thin-core vortices of this type are ideal model
systems for studying the conservation of helicity; they
concentrate the region of interest to a small subset of the
broader three-dimensional flow, while efficiently encoding
the fundamental physics of the problem in their three-
dimensional shape. Indeed, from their shape, physical
quantities such as energy, momentum and helicity can
be determined [25], and the geometric nature of the de-
scription allows natural generalizations to other knotted
physical systems. Here, we generate knots, links, and
unknots (distorted rings) in vortices in water, simula-
tions of Gross-Pitaevski equation (GPE, a simple model
of a BEC [23]), and Biot-Savart simulations, and recon-
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FIG. 2: (A, B) The computed center-line helicity (Hc) and length for of a pair of linked rings in experiment through the first
two reconnection events, showing the efficient conversion of link helicity to writhing (coiling). The teal data indicates the raw
experimental traces, while the orange data has been smoothed with a windowed sinc function whose spatial cutoff is λ = 50 mm
(the total vortex length is ∼1 m). The gray inset diagrams indicate the topologies at different stages of the vortex evolution.
(C, D) The center-line helicity and length for an experimental trefoil vortex knot, through the first two reconnections (out
of three total). (E, F) The center-line helicity and relative length for GPE-simulated trefoil knots for a range of structure to
core-size ratios, r̄/ξ. Unlike the experimental results, a clear jump in helicity is observed during the reconnection. The inset
shows four color-coded scales, where the tube width corresponds to the healing length, ξ. (G) Two traces of a pair of initially
linked vortices in experiment, just before and after a reconnection event. The traces are colored according to the computed
local helicity density, h = L/Γut. The change in topology has a small effect on the overall helicity due to the anti-parallel
vortex configuration. (H) Renderings of density iso-surfaces (ρ = 0.5ρ0) for a trefoil vortex knot (r̄ = 12ξ), simulated with
the GPE. The initially knotted configuration changes to a pair of unlinked rings whose writhe conserves most of the original
helicity. (I) The helicity jump per reconnection event as a function of size ratio for GPE simulated trefoil knots.

struct the shape of their vortex cores up to and through
topology-changing reconnections.

Technical details for all systems are described in the
supplementary methods section, and follow established
methods [19, 24, 26, 27]. For all systems, the time-
dependent vortex shape is reduced to a series of 3D polyg-
onal paths (typically with ∼ 103 points per time step),
which are used to calculate all subsequent quantities of
interest. For experimental data, the vortices are recon-
structed by identifying and tracing line-like features in
the volumetric data [28–30]. For the GPE simulations,
the vortex paths are obtained by tracing minimal ridges
in the density field. While viscous vortices and GPE-

simulated BECs allow for vortex reconnections, thin-core
Biot-Savart vortices do not, and so we limit the use of
these simulations to study the evolution of vortices that
are not changing topology. To allow comparisons be-
tween different systems, the time of each is rescaled with
the r.m.s vortex size, r̄, and circulation, Γ: t′ = t×Γ/r̄2.
For experimental vortices, the circulation is estimated as
that of a thin plate in uniform flow [31].

Typically, a reconnection event is expected to vio-
late the conservation of helicity because it changes vor-
tex topology by creating or removing a crossing (e.g.
Fig. 1A), which should result in a sudden, discontinuous
jump of the helicity, |∆Hc| ∼ 1 Γ2. Recently, more de-
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FIG. 3: (A, B) ‘Helistograms’ for A, a pair of linked rings and B, a trefoil knot in a viscous fluid experiment (the data set
is the same as shown in Fig. 2C-F; the total vortex length is ∼ 1m for both). The left portion of each series of plots shows
the helicity contribution due to coiling on different spatial scales, obtained by computing ∂nHc(λ = 10n), where λ is the cutoff
wavelength for a windowed sinc smoothing. The right portion of each plot shows the irreducible contribution to the helicity
originating from the global vortex topology. Both the coiling and topological contributions are scaled so that the total helicity
is proportional to the filled area of the plots. The center column shows images of the numerically traced vortices smoothed to
λ = 100 mm.

tailed analytical results have also indicated that helicity
may be dissipated in a reconnection event [17]. Remark-
ably, results from both our experiments and numerical
models reveal jumps in centerline helicity that are signif-
icantly smaller (Fig. 2ACE). The centerline helicity of
viscous fluid vortices appears to be nearly unaffected by
reconnections, while GPE simulations show a jump in the
range of |∆Hc| ∼ (0.1− 0.8) Γ2 which depends on the
overall scale of the vortex (Fig. 2I). This smaller than ex-
pected jump indicates that the vortices are spontaneously
arranging themselves into a distinctly non-planar geom-
etry which reduces or eliminates the change in helicity
that occurs when a reconnection takes place. (The pre-
cise mechanism for this will be discussed later.) Due to
the fact that the global topology is changing through ev-
ery reconnection event, this means that in each case the
helicity is changing form: converting from global topol-
ogy to internal structure, which we measure as writhing.

In the case of linked rings, the linking is converted to
the writhe of successively one and then two vortex loops,
while in the case of a trefoil knot, the helicity flows from
writhe to linking and back to writhe. Superimposed with
this changes are small-scale Kelvin-waves excited by the
vortex generation process, which can be seen to prop-
agate along the vortex knot. To understand the helic-
ity dynamics it is therefore important to account for the
separate contribution to the total writhe from each of

these length scales. In order to do this we smooth the
measured vortex paths using a windowed sinc kernel of
varying width, λ, to introduce a hard spatial-cutoff (see
supplementary methods), and recalculate the helicity as
a function of this smoothing, Hc(λ). The derivative of
this function, ∂Hc|λ, then quantifies the helicity content
stored at spatial scale λ (see supplemental movies S1-
2). The resulting ‘helistograms’ are shown in Figure 3.
Ultimately, there is a component of the helicity that is
not removed by even long-scale smoothing; for the rela-
tively simple topologies studied here the resulting writhe
is nearly integer. This integer component arises because
the path becomes nearly planar and corresponds to the
crossing number in this effective planar projection. We
refer to the non-integer fraction removed by smoothing as
‘coiling’ and to the remainder as an effective integer knot-
ting number, akin to linking (Fig. 3). Thus the transfer
of helicity from global linking and knotting to coiling on
different scales can be quantified through the reconnec-
tions.

Figure 3A shows the helistogram for experimental
linked rings before, during, and after the reconnection
process (see also supplemental movie S3). The ‘coiling’
component of the writhe, which is initially absent, devel-
ops a negative peak on a scale of 20-30 mm (the initial to-
tal vortex length is ∼850 mm) as the vortex stretches and
deforms approaching the first reconnection. Immediately
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following the reconnection, the topological component of
the helicity drops by 2Γ2 as expected; at this moment the
vortex centerline is topologically trivial. To compensate,
two positive peaks appear in the helistogram: the first at
200 mm corresponds to a single coiling turn found near
the reconnection (also seen in Fig. 2G), and the second
at 600 mm that quantifies the large-scale folding of the
resulting unknot (see also supplemental Fig. S2). The
second reconnection event transfers this large scale fold-
ing to a second feature on the 200 mm scale.

For the case of the trefoil knot (Fig. 3B, supplemen-
tary movie S4), we observe similar dynamics. A can-
cellation between positive and negative coils at different
scales maintains near constant total helicity as the vortex
initially deforms towards reconnections. After the first
reconnection event, the topological component drops by
1 and is balanced by a coiling turn at ∼150 mm. At this
point, the vortex tube topology is that of linked rings,
and the subsequent topological evolution is qualitatively
similar to that of the initially linked rings.

How can the efficient conservation of centerline helic-
ity through a reconnection be understood in view of the
fact that the global vortex topology is changing? For a
nearly planar vortex shape, a reconnection event would
be expected to change the helicity by ∆Hc/Γ2 ∼ 1 be-
cause it will create or destroy a crossing (e.g. Fig. 1A).
However, the notion of a ‘crossing’ only exists for paths
projected into a plane; conversely, the observed vortex
shapes are extremely non-planar, particularly so in the
region near a reconnection. For non-planar paths, the re-
connections can happen between two arbitrarily curved
anti-parallel segments (Fig. 4B), which conserves helic-
ity because it does not create or destroy a crossing in
any projected plane. In principle, anti-parallel reconnec-
tions can also be drawn for planar shapes if they happen
away from a crossing (supplemental Fig. S4), but the
resulting diagrams are not representative of the shapes
we observe forming naturally in vortex evolution. It has
previously been observed that an anti-parallel configu-
ration is spontaneously formed for reconnecting regions
when they are driven by stretching; energy conservation
dictates that sections of vortex loops should anti-align as
they approach to reduce the energy per unit length [19].
Thus, remarkably, the reconnection geometry naturally
adopted by linked and knotted vortices is precisely the
form required to conserve helicity by the introducing
writhe (coiling) which compensates for that lost from
the global linking and knotting. This mechanism acts
at the moment of reconnection as it is a result of the re-
association of the lines that accompanies the reconnec-
tion. Related mechanisms have been suggested for re-
connections in dissipative plasmas, although in that case
linking is rather converted to internal twist [20, 32, 33].

We now turn to a discussion of analogous processes
in GPE simulations of linked and knotted vortex loops.
Quantum vortices, like those in the GPE or real super-

fluids, provide an interesting comparison to viscous fluid
vortices because the vortex lines are instead defined by
quantized phase discontinuities in the superfluid wave-
function [34, 35]. GPE vortices have no fluid in their core
and can store no internal structure, thus their topology
is entirely quantified by the centerline helicity Hc (lo-
cal twist is not possible). Extraction of the vortex cen-
terlines (obtained by ridge-tracing the reduced density
core) reveals similar dynamics, including the stretching
and anti-alignment of vortices that heralds the reconnec-
tion events (Fig. 2EF, Fig. S3, supplementary movie
S5) . The helicity drop varies as a function of scale; as
the vortex r.m.s. radius (r̄) is increased relative to the
size of the density-depleted ‘core’ (ξ), the helicity lost
to the reconnection is reduced and is consistent with a
∆Hc ∝ (r̄/ξ)

−1
dependance (Fig. 2I). This variable drop

can be explained by the fact that the relatively thicker
colliding cores will start the reconnection process sooner,
before they have had time to adopt the ideal configura-
tion. It is unclear if the same effect is present in the
experiments, due to the difficulties associated with accu-
rately tracking significantly smaller vortices; studies the
detailed dynamics of reconnections in super-fluids and
classical fluids suggest that there may be differences [36–
38].

Interestingly, the helicity of our GPE knot begins to
drop prior to the reconnection event, and this drop seems
to be only weakly affected by scaling, apparently contra-
dicting the notion that helicity is perfectly conserved in
the absence of topology changes. This effect can also be
seen in experiments and simulations of distorted vortices
when they are not changing topology (for example, the
experimental linked rings, Fig. 2A). A more dramatic ex-
ample of this effect can be seen in Biot-Savart simulations
of a helically wound ring ‘leap-frogging’ an undistorted
ring. As it passes through the circular ring, the helically
wound vortex is compressed and the centerline helicity
increases dramatically, even though the global topology
does not change (Fig. 4EF and supplementary movie S6).

A simple model of this geometric change in centerline
helicity can be obtained by considering the writhe of an

isolated spring-like helix: Wrhelix ≈ Γ2N 2π2a2

L2 , where
N is the number of helical turns, a is the radius of the
cylinder around which it is wound, L the cylinder length.
If this this helix is stretched along the axis by a uniform
incompressible flow, this helicity would scale likeHhelix ∝
L−3. This simplistic model qualitatively captures the
centerline helicity of the leap-frogging helix of Fig. 4E.

On the other hand, if we imagine wrapping a ribbon
around a cylinder N times (Fig. 4D), we expect the to-
tal number of twists in the ribbon to remain constant
even if the cylinder changes shape. If we regard the rib-
bon normal as a method for keeping track of the internal
structure of a vortex core, we would conclude the to-
tal helicity is constant: Htot = NΓ2 = Wrhelix + Hτ ,
where Hτ is the twist contribution to the helicity. As
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FIG. 4: (A) Illustrations of mechanisms for storing helicity
on different spatial scales; in each case the helicity of the de-
picted region is the same, Hc = 2Γ2. While linking is global
in nature, both coiling and twisting are local – they produce
linking between different sub-sections of the vortex tube, or
in this case different edges of the illustrated ribbon. (B,
C) Diagrams of reconnection events in locally anti-parallel
or parallel orientations. The anti-parallel reconnection does
not change helicity because it does not introduce a new ‘cross-
ing’ of the projected tubes, unlike the parallel reconnection.
This anti-parallel configuration tends to form spontaneously
for topologically non-trivial vortices, even in the absence of
viscosity, in which case helicity is efficiently converted from
global linking to local coiling. (D) Coiling can be converted to
twisting by stretching helical regions of the vortex; this mech-
anism conserves total helicity because it does not change the
topology, and results in an apparent change of helicity when
core-twist can not be resolved. (E, F) The helicity (E) and
length (F) as a function of time for a simulated geometrical
evolution of a circular vortex ring (yellow) ‘leap-frogging’ a
vortex ring with a helix superimposed (blue).

shown above, the writhe contribution varies as the vor-
tex is stretched, and so we see that stretching provides
a purely geometric mechanism for converting coiling to
twist helicity. In the case of the GPE simulation, the
vortex core does not support structure and so there can
be no such conversion; the helicity will then vary as the
vortex is stretched. For experimental vortices, this twist
should be present but we are not able to directly resolve
it; doing so is a challenging goal for future investigations.

Ultimately, when should one expect helicity to be dis-
sipated for viscous vortices? For Navier-Stokes flow, the
rate of change of helicity is given by: [1]

∂tH = −2ν

∫
ω · (∇× ω) dV, (4)

where ν is the kinematic viscosity of the fluid. For a
straight, uniformly twisted section of vortex tube, the
dissipation rate is then given by ∂tH = −Hτ ν

Aeff
, where

Aeff is an effective core area (see supplemental informa-
tion for details). In other words, the helicity is dissipated
when the core is locally twisted. As a result, helicity is
viscous vortices only stably stored as knots, links, or coils,
but not as local twist. This is notable because twist he-
licity is also not present for GPE vortices (or quantum
vortices more generally), suggesting an interesting corre-
spondence in their topological dynamics.

Our results show that helicity can be conserved in
real fluids even when their vortex topology is not. Vor-
tex reconnections do not simply dissipate helicity, but
rather mediate a flow from knotting and linking on large
scales to coiling on smaller scales. Related geometric
mechanisms may convert this coiling into twist on even
smaller scales, where it may be dissipated. Interestingly,
both topological (Fig. 4B) and non-topological (Fig. 4D)
mechanisms for helicity transport are driven by stretch-
ing, which is observed to happen spontaneously for initial
linked or knotted vortices. As these mechanisms we iden-
tify have a natural geometric interpretation, they read-
ily extend to any topological flow. Taken as a whole,
this suggests that helicity may yet be a fundamental con-
served quantity, guiding the behavior of dissipative com-
plex flows from braided plasmas to turbulent fluids.
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