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Fracture in sheets draped on curved surfaces
Noah P. Mitchell1*, Vinzenz Koning2, Vincenzo Vitelli2 andWilliam T. M. Irvine1,3*
Conforming materials to rigid substrates with Gaussian
curvature—positive for spheres and negative for saddles—has
proven a versatile tool to guide the self-assembly of defects
such as scars, pleats1–5, folds, blisters6,7, and liquid crystal
ripples8. Here, we show how curvature can likewise be used
to control material failure and guide the paths of cracks. In
our experiments, and unlike in previous studies on cracked
plates and shells9–11, we constrained flat elastic sheets to
adopt fixed curvature profiles. This constraint provides a
geometric tool for controlling fracturebehaviour: curvature can
stimulate or suppress the growth of cracks and steer or arrest
their propagation. A simple analytical model captures crack
behaviour at the onset of propagation,while a two-dimensional
phase-field model with an added curvature term successfully
captures the crack’s path. Because the curvature-induced
stresses are independent of material parameters for isotropic,
brittle media, our results apply across scales12,13.

Geometry on curved surfaces defies intuition: ‘parallel’ lines
diverge or converge as a consequence of curvature. As a result,
when a thin material conforms to such a surface, stretching and
compression are inevitable3. As stresses build up, the material can
then respond by forming structures such as wrinkles or dislocations,
which are themselves of geometric origin. This interplay between
curvature and structural response can result in universal behaviour,
independent of material parameters1,2,4,5,7.

A markedly different material response is to break via
propagating cracks. While the use of curvature to control the
morphology of wrinkles and defects in materials has been recently
explored1,2,7, here we investigate the control of cracks by tuning
the geometry of a rigid substrate. Can we design the underlying
curvature of a substrate to steer paths of cracks in a material draped
on that surface, thereby protecting certain regions?

To probe the effect of curvature on cracks, we conform flat
polydimethylsiloxane (PDMS) sheets (Smooth-On Rubber Glass II)
to three-dimensional (3D)-printed substrates (Fig. 1). A lubricant
ensures that the sheet conforms to the substrate while moving
freely along the surface. We consider various geometries having
positive and negative Gaussian curvature in both localized and
distributed regions, including spherical caps, saddles, cones and
bumps. To begin, we focus on the bump as a model surface, as it is a
common geometry containing regions of both positive and negative
curvature. A typical experimental run can be seen in Supplementary
Movies 1–7. We seed a crack by cutting a slit in the sheet, with a
position and orientation of choice. By successive cuts, we increase
the slit’s length until it exceeds a critical length, known as theGriffith
length14,15, and propagates freely.

The Griffith length of a crack in a flat sheet is nearly independent
of position and orientation. On our curved geometry, we find that
this is not so. On the top of the bump, a shorter slit is necessary
to produce a running crack, and on the outskirts of the bump
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Figure 1 | Gaussian curvature—positive for caps and negative for
saddles—governs the behaviour of cracks. In the experimental setup, an
initially flat PDMS sheet conforms to a curved 3D-printed surface. A small
incision nucleates the crack.
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Figure 2 | Curvature stimulates or suppresses fracture initiation.
a, Gaussian curvature and curvature potential distributions for a bump with
height profile h(ρ)=αx0 exp (−ρ2/2x20). b, While the Gri�th length for a
crack in a flat sheet (dashed line) is nearly constant, curvature modulates
the critical length of a seed crack. All samples shown had a 12 cm diameter
(2R), an aspect ratio α= 1/

√
2, bump width x0=R/2.35, and constant

radial displacement uρ/R=0.012.

(where the Gaussian curvature is negative), the behaviour depends
strongly on the orientation of the seed crack: fracture initiation is
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Figure 3 | Kinking and curving of crack paths in sheets conformed to a
bump. a,b, Crack paths kink and curve around a bump. c,d, Phase-field
simulations of cracks on a bump, coloured by the phase-modulated energy
density so that broken regions are darkened. e,f, The phase-field crack path
predictions (black solid curves) overlie the experimental paths (coloured
curves). (Inset) Introducing a time delay that matches experiment for the
right crack tip’s propagation eliminates the discrepancy far from the bump.
g, Analytical prediction (solid black curve) of the kink angle, θk, overlies
experimental results. h, Analytical crack path predictions overlie
simulations for free (constant stress) boundary conditions. All experiments
and simulations have aspect ratio α= 1/

√
2 and bump width x0=R/2.35,

including the free boundary condition simulations.

suppressed for radial cracks, while the Griffith length for azimuthal
cracks approaches that of the flat sheet (Fig. 2b). Thus, curvature
can both stimulate and suppress fracture initiation, depending
on the position and orientation of the seed crack relative to the
curvature distribution.

To relate these findings to the curvature distribution, we consider
the stresses induced by curvature and their interaction with the
crack tip. Stresses generated in the bulk of a material become
concentrated near a crack tip. In turn, a crack extends when the
intensity of stress concentration exceeds a material-dependent,
critical value14,16. Expressed mathematically, in the coordinates of
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Figure 4 | Curvature arrests a centre crack. a, As the aspect ratio of the
bump increases while the initial stress at the boundary (σρρ(R)=0.068E)
remains fixed (shown from left to right), the final crack length decreases.
b, Simulations reveal that as the aspect ratio of the bump increases, the
intensity of stress concentration falls below the critical value at
progressively shorter crack lengths. Inset: Final crack lengths from
spring-lattice (squares) and phase-field simulations (triangles) mimic the
arrest behaviour seen in experiment (coloured circles with error bars
marking one standard deviation). The solid line is a guide to the eye.

the crack tip (r , θ), the stress in the vicinity of the tip takes
the form

σij=
KI
√
2πr

f Iij (θ)+
KII
√
2πr

f IIij (θ) (1)

where f I,IIij are universal angular functions16. The factors KI and KII
measure the intensity of tensile and shear stress concentration at
the crack tip, respectively, and are known as stress intensity factors.
Thus, the Griffith length, ac, is the length of the crack at which the
intensity of stress concentration reaches the critical value, Kc. In
curved plates or sheets, the near-tip stress fields display the same
singular behaviour as in equation (1)17, but the values of the stress
intensity factors are governed by curvature.

Curving a flat sheet involves locally stretching and compressing
thematerial by certain amounts at each point. According to the rules
of differential geometry, this stretching factor, controlled by the field
Φ , is determined by an equation identical to the Poisson equation of
electrostatics18, with the Gaussian curvature,G, playing the role of a
continuous charge distribution3,4:

∇
2
Φ(x)=−G(x) (2)

As the sheet equilibrates, its elasticity tends to oppose this
mechanical constraint, giving rise to stress. The isotropic stress from
curvature is then related to the potential via σ G

kk= EΦ , where E
is Young’s modulus, and the stress components are determined by
integrals of the potential and boundary conditions (see equations 25
and 26 of the Supplementary Information). Our study rests on a
general geometric principle: positive (negative) curvature promotes
local stretching (compression) of an elastic sheet, leading to the
enhancement (suppression) of crack initiation. Variations in the
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Figure 5 | Tuning crack paths with the curvature landscape. a, Inverting the sign of the curvature (red for positive, blue for negative) inverts the behaviour
of the crack, as shown by the contrasting crack paths on a L= 12 cm spherical cap (top, G= 1/L2) and on a L= 15 cm pseudospherical saddle (bottom,
G=−1/L2). Seed crack locations are marked in green. b, On spherical caps, cones, and bumps, the positive integrated curvature from the centre to the
crack’s position directs cracks towards the azimuthal direction, while the negative curvature saddle inverts this behaviour. c,d, Further phase-field
simulations demonstrate that curvature can protect a region of a material conformed to a bump (c, here under 3% biaxial displacement) or induce desired
crack paths (d, here under 1.5% uniaxial displacement). Final crack paths (black) for various initial slits (green) are overlaid to demonstrate that the bumps’
central regions are protected. The results demonstrate that merely the addition of simple bumps o�ers a wide range of control, in experimentally
realizable conformations.

potential Φ steer the crack path, with the form of Φ determined
nonlocally from the curvature distribution (see equation (2) and
equations 39–41 of the Supplementary Information).

For the bump, the curvature potential, Φ , is large on the cap,
where curvature is positive, and decays to zero as the negative
curvature ring screens the cap (Fig. 2a). As EΦ is the isotropic
stress, crack growth is stimulated where the potential is greatest—
on the cap of the bump, resulting in a small Griffith length there
(Fig. 2b).Moving away from the cap, the potential decays, producing
a stress asymmetry. This results in longer Griffith lengths with
strong orientation dependence on the outskirts of the bump (see
equations 39–41 of the Supplementary Information). Figure 2b
shows the theoretical results overlying the experimental data, with
no fitting parameters. We find that this minimal model is sufficient
to capture the phenomenology of our system at the onset of fracture
and provides correct qualitative predictions for longer cracks, even
in the absence of symmetry.

Curvature not only governs the critical length for fracture
initiation, but also the direction of a crack’s propagation. For cracks
inclined with respect to the bump, the cracks change direction
as they begin to propagate, kinking at the onset of crack growth
and curving around the bump, as shown in Fig. 3a. Cracks kink
and curve towards the azimuthal direction because a decaying

curvature potential, Φ(ρ), creates a local stress asymmetry: σ G
φφ
<

σ G
ρρ
. As a result, the crack relieves more elastic energy by deflecting

towards the azimuthal direction. Analytical prediction of the
kink angle, θk, is made by selecting the direction of maximum
hoop stress asymptotically near the crack tip (equation 33 of the
Supplementary Information). Figure 3g shows excellent agreement
with experiment.

A purely analytical model is sufficient to capture the long-
time behaviour of the crack if the stress is fixed at the boundary
(see Fig. 3h). This model extends the first-order perturbation
theory for slightly curved cracks developed by Cotterell and Rice19
to curved sheets (see the section entitled Perturbation Theory
Prediction of Crack Paths in the Supplementary Information). As
shown in Supplementary Fig. 7, the perturbation theory prediction
is also increasingly accurate for constant displacement loadingwhen
the system size is large with respect to the crack.

For modest sample sizes with constant displacement boundary
loading, however, a numerical approach is required because of
interaction between the crack and the boundary. To predict the
curved fracture trajectories, we adapt the KKL phase-fieldmodel20,21
to include curvature by incorporating the height profile of the
substrate into the two-dimensional strain field22. This numerical
model treats local material damage as a scalar field that evolves if
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there is both sufficient elastic energy density and a local gradient in
the field (see Supplementary Information). As depicted in Fig. 3c,d,
these conditions aremet at the tip of a propagating crack. Thismodel
captures the full crack paths, as shown by the black curves overlying
experimental results in Fig. 3e,f.

A systematic deviation in the extensions of the crack tips further
from the bump is evident in Fig. 3e. In the experiments, the tip
closer to the bump begins its advance first, and the dynamics of the
tip are not purely quasistatic. In the phase-field simulation, simply
suppressing the tip further from the bump for a short time until the
near tip has reached a distance matching experiment eliminates this
deviation, as shown in the inset of Fig. 3e (see the section entitled
Phase-Field Model in the Supplementary Information for details).

Having seen how curvature affects the initiation and propagation
of cracks, we now turn our attention to the ability of curvature
to arrest cracks. As seen previously in Fig. 3, curved cracks can
terminate before reaching the sample boundary. We find, moreover,
that curvature can arrest cracks even for cases in which the path
is undeflected, as shown in Fig. 4. In flat sheets, centre cracks
propagate all the way to the boundary, but if we introduce a bump
while holding the initial stress at the boundary fixed, the final crack
length decreases.

From the decaying isotropic stress profile, we can infer that
curvature generates azimuthal compression, halting the crack’s
advance. Using our phase-field model, we indeed find that
increasing the aspect ratio of the bump lowers the intensity of
stress concentration for larger crack lengths (Fig. 4b). A fully 3D
spring network simulation using finite element methods provides
additional confirmation (open squares in Fig. 4b). Thus, curvature
decreases the final crack length, despite promoting crack initiation
on top of the bump.

Curvature’s influence on the propagation of cracks that we
have investigated on the bump is not peculiar to that surface.
As shown in Fig. 5, we demonstrate this generality by testing a
number of additional surfaces, including spherical caps (uniform
G> 0), cones (G=G0δ(x)), and pseudospherical saddles (uniform
G < 0). A region of positive curvature, such as the tip of a
cone, locally stimulates crack growth near the region, but also
guides cracks around that region. Conversely, negative curvature
of a saddle suppresses crack growth and orients cracks away
from the centre (see Fig. 5 and Supplementary Information).
Thus, an opposite curvature source induces an opposite response,
allowing the behaviour of cracks to be tuned by engineering the
curvature landscape.

In Fig. 5c,d, we demonstrate the robustness of curvature’s effects
by considering samples without azimuthal symmetry using the
phase-field model. Here, we use a bump to protect a central region
from incoming cracks of various orientations, to produce oscillating
cracks, and to focus and diverge possible crack paths. For the
geometries of Fig. 5d, a somewhat reduced critical stress intensity
factor compared to our experimental material prevents crack arrest.
Although the stress is highest on top of a bump, these regions are
protected from approaching cracks (see Supplementary Movie 8).

The use of substrate curvature to control fracture morphology
differs from using existing cracks or inclusions in that our method
requires no introduction of pre-existing structure into the fracturing
sheets23,24. For brittle sheets with isotropic elasticity, curvature-
induced stresses are independent of material parameters and
dependent only on geometry. Therefore, our results represent
the effects of substrate curvature on fracture morphology for
a wide range of materials, with potential implications for thin
films, monolayers12,25, geologic strata such as near salt diapirs13,26,
and stretchable electronics27. Since the results are based on the
modulations of the material’s metric, they should also apply beyond
conformed sheets, with metrics engineered by other methods, such
as temperature gradients28 or differential swelling29.

Code availability
Custom Python codes for phase-field model simulations and
analytical crack trajectories are available at https://github.com/
irvinelab/fracture, including detailed documentation.
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