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Creation of an isolated turbulent blob fed  
by vortex rings

Takumi Matsuzawa    1, Noah P. Mitchell    1,3, Stéphane Perrard1,4 & 
William T. M. Irvine    1,2 

Turbulence is hard to control. Many experimental methods have been 
developed to generate this elusive state of matter, leading to fundamental 
insights into its statistical and structural features as well as its onset. In all 
cases, however, the material boundaries of the experimental apparatus 
pose a challenge for understanding what the turbulence has been fed and 
how it would freely evolve. Here we build and control a confined state of 
turbulence using elemental building blocks—vortex rings. We create a 
stationary and isolated blob of turbulence in a quiescent environment, 
initiated and sustained solely by vortex rings. We assemble a full picture of 
its three-dimensional structure, onset, energy budget and tunability. The 
incoming vortex rings can be endowed with conserved quantities, such 
as helicity, which can then be controllably transferred to the turbulent 
state. Our one-eddy-at-a-time approach opens the possibility for sculpting 
turbulent flows much as a state of matter, placing the turbulent blob at the 
targeted position, localizing it and ultimately harnessing it.

Vorticity, which measures the local rotation rate of a fluid, is the build-
ing block of flow. In its absence, any fine structure in an incompressible 
flow decays rapidly with distance from material boundaries. Conversely, 
injection of vorticity can power complex bulk flows1,2, the quintessential 
example being the iconic multi-scale liveliness of turbulence. Canonical 
methods of generating turbulence rely on the spontaneous shedding 
of vorticity from boundaries3–10, be it of pipes11–14, grids15–18 or spinning 
plates19–21. This makes it hard to control, or have detailed knowledge of, 
the fabric of the injected vorticity. It also often couples the turbulence 
to boundaries, posing a challenge to study its unconstrained evolution. 
Yet, our most basic models of turbulence are cast in terms of vorticity 
alone, with no reference to walls.

Knowing the structure of the vorticity that feeds turbulence is fun-
damental to a full understanding of turbulence because it determines 
the inviscid invariants including the amount of energy, helicity, linear 
impulse and angular impulse that are injected into the turbulence. The 
balance of the latter two invariants, for example, might lead to differ-
ent types of turbulence in the large scales22, and has been proposed to 
rule the decay of turbulence23–26. To make it possible to address these 

fundamental questions, we set out to build and sustain an isolated 
region of turbulence far away from boundaries, while controlling  
the injection of inviscid conserved quantities and fully observing its 
free evolution.

Vortex loops are a natural candidate to this end. A vortex ring is 
readily generated by impulsively drawing water through an orifice in 
a tank (Fig. 1b). Seeding the water with bubbles reveals the coherent 
motion of the ring as it travels across the tank, carrying its ‘atmos-
phere’ as it propagates (Fig. 1c). Such a ring can, in an ideal fluid, 
travel infinitely far away from the boundaries. In real fluids, vortex 
rings eventually decay via viscous processes, or break down due to 
instabilities27–29. Nonetheless, they coherently carry their vorticity, 
and associated inviscid invariants, far from the boundaries that gave 
rise to them.

We set out to combine vortex loops like LEGO blocks, firing 
them together to ‘print’ a stationary region of turbulence in the cen-
tre of our tank (Fig. 1a). As demonstrated in iconic vortex collision 
experiments30–32, recently revisited as a minimal means to understand  
the inertial cascade in real space32–35, two vortex rings fired together 
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In this new state, vorticity is confined, and evenly distributed 
within an approximately spherical region (Supplementary Video 10). 
The flow inside the blob is in stark contrast to its surroundings, which 
remain relatively quiescent. The blob is sustained as long as the vor-
tex rings are injected. Both the energy and enstrophy averaged over  
the measured plane indicate the comparative steadiness of the state 
(Fig. 2h) with weak dependence on the periodic forcing.

Figure 3a shows a Reynolds decomposition of this complex flow 
into mean and fluctuating components: Ui = 〈Ui〉 + ui. The blue cloud 
represents the average energy associated with the fluctuations and 
occupies the central region alone, whereas the yellow clouds represent 
the mean flow energy, associated with the paths along which the vortex 
rings are fed. We find that the flow inside the blob is dominated by fluc-
tuations (〈u2〉/〈U〉2 ≈ 101.5−103) whereas the flow outside the blob is domi-
nated by coherent flow (Supplementary Videos 5–7). Furthermore, the 
velocity fluctuations inside the blob are only weakly dependent on the 
forcing phase, whereas the coherent flow outside the blob is phase 
dependent, reflecting the laminar motion of the vortex rings. The tem-
porally and radially averaged profiles of both the fluctuating energy and 
enstrophy are approximately constant up to a radius Rblob (Supplemen-
tary Section VB) but decay rapidly for r > Rblob approximately as r−4. The 
local dissipation rate ϵsij (r) = 2ν⟨sijsij⟩  also possesses the same radial 
profile as the energy and enstrophy (Fig. 3b), where sij = (∂jui + ∂iuj)/2.

To investigate the character of the flow inside the blob, we 
compute the fluctuating energy spectrum and the second-order 

can multiply into a series of smaller rings, giving rise to turbulence. 
Figure 1e shows a version of this experiment using a pair of vortices 
created by drawing fluid into our tank through opposing orifices  
(Fig. 1d and Supplementary Video 1). The rings, visualized using 
bubbles, approach each other, stretch and recombine into smaller, 
outwardly propagating rings. While this example demonstrates the 
tendency of colliding rings to produce turbulence, it also highlights the 
tendency of colliding vortices to divide and redirect, escaping confine-
ment. The situation is unchanged in the case of four (Fig. 1f) or eight 
(Fig. 2a–d) vortices. This generic behaviour of vortices colliding, recon-
necting and escaping challenges the idea that a blob of turbulence can 
be printed and confined at a target position (Supplementary Video 3).

In a naïve attempt to hold the escaping vorticity in place, we fired 
subsequent sets of eight vortex rings at repeating intervals so that the 
outgoing vortices would interact with the in-going vortices. To image the 
flow, we use a combination of particle imaging velocimetry (PIV), seeded 
bubble tracking, and three-dimensional (3D) particle tracking velocime-
try (PTV) (see Supplementary Section II for a detailed description of the 
acquisition and visualization processes). At a low frequency (f = 0.2 Hz), 
we observe a simple repetition of the single-shot reconnection dynamics 
(Fig. 2a–d and Supplementary Video 4), where coherent vorticity comes 
in and leaves (Supplementary Video 9). However, when the frequency 
is sufficiently high to enable the outgoing vortex rings to interact with 
the incoming rings, a novel state with a remarkably different vorticity 
distribution emerges (Fig. 2e–g and Supplementary Video 2; f = 4 Hz).

Ring speed Vring 

a b
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d

e f

2Rring

Fig. 1 | Generation of turbulence using vortex rings and their resistance to 
confinement. a, We envisage that colliding vortex rings creates turbulence at a 
target location far from boundaries with a controlled injection rate of energy.  
b, A vortex ring and its atmosphere, visualized by bubbles. c, Streamlines of 
a vortex ring in the co-moving frame. d, A photograph of the experimental 
chamber. Scale bar, 100 mm. e,f, Voriticity resists confinement, as shown by 

a head-on collision of two identical vortex rings (blue) generating numerous 
secondary rings after reconnections occur (red ellipse, which is a projection of 
a circle) (e) and a collision of four identical vortex rings resulting in two vortex 
loops after reconnections (red) (f). Left: result of a Gross–Pitaevskii simulation. 
Right: experimental results, visualized by bubbles. Scale bar, 30 mm along the 
semi-major axis of the red ellipse.
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structure function. PIV measurements are inherently limited at 
small scales by image resolution and at large scales by the finite 
field of view. To span the full range of scales in our turbulent flow, 
we performed two-dimensional (2D) PIV measurements at three 
levels of magnification (Fig. 3d; spatial resolutions Δx of 0.5, 1.3,  
2.4 mm ≈ 2.4η, 6.2η, 11.4η, where η is a Kolmogorov length scale) 
and stitched the results together by taking into account the spec-
tral leakage and low-pass filtering effects of PIV. With 3D PTV, we 
measure a one-dimensional (1D) energy spectrum on the slice that 
cuts the middle of the turbulent blob with a spatial resolution of 
Δx = 3.0 mm = 14.4η. In addition, the resulting four-dimensional (4D) 
velocity field affords a direct computation of a 3D energy spectrum 
without the assumption of isotropy (Supplementary Section VIIH). 
The resulting 1D energy spectrum E11(κ1) and the second-order struc-
ture function DLL of the fluctuating component of the flow are shown 
in Fig. 3e,f. Here κ1 is a component of a wavenumber vector in the 

direction that the Fourier transform is performed. Our measure-
ments at the three levels of magnification agree where their ranges 
of validity overlap. The rescaled spectrum is in agreement with the 
universal curve obtained by grid turbulence and turbulent boundary 
layer experiments9. Similarly, the second-order longitudinal structure 
function when rescaled by the 2/3 power law in the inertial sub-range 
is consistent with that of homogeneous isotropic turbulence.

Our spectra and structure function support the notion that the 
flow inside the blob is turbulent and therefore that its statistical proper-
ties can be captured by a dissipation rate ϵ0 and an integral scale ℒ  
(refs. 36,37), together with the fluid viscosity ν. The value of ϵ0 is notori-
ously challenging to measure38,39. It can be inferred from the local strain 
rate measurements, from fitting the measured spectrum to the univer-
sal curve or by fitting the peak value in the scaled second-order struc-
ture function38. As discussed in Supplementary Section VIIIB, we find 
that all three methods are in agreement when computed on our 
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Fig. 2 | Two phases emerge as eight vortex rings repeatedly collide: coherent 
reconnections and a confined state of turbulence. a, Coherent vortex 
reconnections of eight vortex rings (blue) result in six secondary rings (red), 
visualized by 3D Lagrangian trajectories. The colour represents the radial 
component of normalized, instantaneous Lagrangian speed, d = (ULag ⋅ r)/|ULag|.  
Here, (Vring/Rring, f) = (20 Hz, 0.2 Hz). b,c,The time-averaged energy (b) and the 
time-averaged enstrophy (c) on the central slice show the passage of vortex rings 
as they enter, reconnect and leave the central region. d, The spatially averaged 
energy and enstrophy on the central plane. Insets: 3D Lagrangian trajectories 

before and after the reconnections. e, Lagrangian trajectories around a  
turbulent blob display uniform, nearly isotropic outflow from the core. Here, 
(Vring/Rring, f) = (20 Hz, 5 Hz). f,g, The time-averaged energy (f) and the time-
averaged enstrophy (g) show an isolated region with high energy/enstrophy.  
h, The spatially averaged energy and enstrophy show the state to be steady.  
Error bands in d and h represent the s.e.m. (n = 5 and 25 cycles, respectively).  
⟨A⟩t  represents the temporal average of A, and ⟨A⟩sn represents the phase-
matched average of A over space and cycles.
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median-filtered, spatio-temporally resolved velocity fields. The cor-
responding value of the Kolmogorov length η = (ν3/ϵ0)

1/4 is shown in 
Fig. 3e. A measurement of the turbulent r.m.s. velocity u′ = √⟨uiui⟩/3  
in turn provides the estimate of the integral length scale ℒ = u′3/ϵ0.

How are the properties of this turbulent blob controlled by the 
incoming vortex rings? As shown in Fig. 3e, we find the value of the 
integral length scale to be close to that of the blob diameter 2Rblob, 
suggesting that both the blob radius and integral length scales are 
determined by the largest scale in the incoming vortex rings. This 
observation is supported by repetitions of our experiment in which we 
varied the frequency of injection of the incoming vortex rings and 
found no change in either ℒ or Rblob. A repetition of our experiment in 
which the incoming vortex ring radius was halved instead resulted in 
a halving of both ℒ or Rblob (Supplementary Section XIA).

The smallest (Kolmogorov) length scale of the turbulent blob η 
(Fig. 3e) has by contrast little relation to the vortex ring radius and 
is instead strongly affected by the incoming vortex ring energy and 
frequency of injection. This is consistent with the notion that, at the 
smallest length scales, turbulence ‘forgets’ about the large-scale forc-
ing that gave rise to it and the velocity field depends on only the energy 
flux ϵ0 and viscosity ν. We thus turn our attention to the balance of 
energy in our system.

Because the flow is at dynamical equilibrium, the dissipated power 
must match the power injected by the vortex rings. If we neglect any 
residual dissipation due to the mean flow, the energy balance is

4πρ∫ ϵ(r)r2dr ≈ 8Kringf, (1)

where ϵ(r) = ϵ0 if r ≤ Rblob and ϵ0(Rblob/r)
4 otherwise. Kring is the kinetic 

energy inside the vortex atmosphere of any one of the incoming  
vortices.

When integrated over all space, the left-hand side evaluates  
to 16/3πϵ0R3

blob = 4/3πϵ0R3
eff, whereas if integrated up to Rblob we have 

4/3πϵ0R3
blob . The right-hand side requires knowledge of Kring.  

When there is a vortex ring in a flow, the energy over all space K is gener-
ally the sum of the energy inside the vortex atmosphere Kring and  
the energy of the added mass associated with the potential flow that 
surrounds the atmosphere Kadded. Kring can be further decomposed  
into the translational kinetic energy of the vortex atmosphere  
Krect = 4/3πR3

atmosphereV
2
ring  and the energy associated with the rota-

tional motion within the vortex atmosphere Kint. While the exact  
partitioning varies by the vortex model, the variation for Kring is  
small (<3.3%) for realistic vortex ring models. We directly measured 
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Fig. 3 | Turbulent flow statistics and energy balance in a turbulent blob.  
a, The mean flow energy ⟨Ui⟩t⟨Ui⟩t/2 (yellow) and mean turbulent energy ⟨uiui⟩t/2 
(blue). b, The radial profile of the dissipation rate on the central plane reveals a 
homogeneous region up to R = Rblob ≈ √6Rring and a tail that decays with ~r−4. 
The profile collapses for rings with different radii. The parameters (Piston stroke 
ratio, piston effective stroke velocity, frequency) = (L/D, veff in mm s−1, f in Hz) are 
as follows: circle (1.5, 196, 5), up-pointing triangle (2.0, 418, 5), down-pointing 
triangle (3.0, 443, 5), square (3.0, 443, 7), diamond (3.5, 318, 5), plus (3.5, 594, 5), 
diagonal cross (3.5, 594, 7), star (3.5, 594, 8). c, The dissipated power in the sphere 
of radius Rblob scales linearly with the power injected into the blob by the vortex 
rings, I. Data presented as mean ± s.e.m. (n = 12). d, Planes display the 

measurement regions of 2D PIV (i = 1, 2) performed at three levels of 
magnification. e, Turbulence length scales with respect to the relevant 
geometries (blob radius Rblob, ring radius Rring, and core diameter a).  
f, Rescaled 1D spectra computed in the homogeneous region (r ≤ Rblob). Here, 
ϵ0 = 6.0 × 104 mm2 s−3, ν = 1.004 mm2 s−1 and Taylor Reynolds number, Reλ = 200.  
λ is a Taylor microscale. The grey master curve is taken from ref. 9 (Reλ ≈ 600) as a 
reference. κ1 is a component of a wavenumber vector in the direction that the 
Fourier transform is performed. The attenuated signal due to PIV is shown by 
hollow data points. g, Rescaled second-order structure functions of the same 
data as in f shown with a reference curve from ref. 9 (Reλ ≈ 600). In f and g, the 
turbulent length scales and relevant geometries in e are shown as vertical lines.
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the energy of our vortex rings and found Kring = (2.0 ± 0.4)Krect, similar 
to the result of 23/14Krect ≈ 1.6Krect for Hill’s spherical vortex (Supple-
mentary Section IIIC).

Figure 3c compares the measured dissipated versus injected 
power for a collection of blobs created by altering the ring size, speed 
and frequency of injection. The dissipated power scales linearly with 
the injected power, with a slope of approximately 1. A more granular 
accounting, for example, including only the energy contained within 
the vortex ring atmosphere and computing ϵ0 only within Rblob, yields a 
linear relationship with lower proportionality constants: 1 (total energy, 
total turbulent dissipation), 0.68 (energy within the incoming vortex 
ring atmospheres, turbulent dissipation within a sphere of radius 
Reff) and 0.33 (energy within the incoming vortex ring atmospheres, 
turbulent dissipation within a sphere of radius Rblob).

Crucially, increasing the velocity or frequency of injection 
increases the rate of energy dissipation while keeping the integral 
length scale fixed, thereby increasing the separation of scales ℒ/η. 
Thus, the ring radius and energy injection provide independent control 
knobs for producing turbulence of a desired intensity localized to a 
given region.

The picture is in stark contrast to the single-collision experiment 
(Fig. 2a) in which vortices come in, reconnect and go out. At these low 
forcing frequencies, the conversion from coherent vortex motion to 
turbulence is far less efficient. Even though in practice reconnections 

trigger energy loss within the outgoing vortices, in the limit of a sin-
gle coherent collision with large separation of scales, the fraction of 
advected energy can be in principle 100%.

What governs the transition to a blob state? The most basic crite-
rion is suggested by geometry: the outgoing rings will collide with the 
incoming rings for f ≳ Vring/Rring. A visualization of coherent vorticity 
in our flow using the Q criterion supports this hypothesis (Supple-
mentary Video 12). A completely different conceptual approach is to 
seek to ‘match’ the incoming vortex ‘eddies’ to the turbulent state.  
A central idea in a turbulent cascade is that energy from each scale ℓ is 

transported to the next in a time τℓ ≈ (ℓ2/ϵ0)
1/3 . If we demand that 

the time between incoming vortices 1/f match the time scale for 
the largest eddy to transfer energy down the cascade, we have 1/f > τℒ. 
For our fully developed turbulent blob, we have ℒ ∝ Rring  (Fig. 4a; 
α0 = 2.17 ± 0.13) and ϵ0 ∝ V2

ringf  (Fig. 4b; α1 = 0.35 ± 0.02) with propor-
tionality constants determined in experiment. We then obtain a crite-
rion for transition: fc = (α1/α0)Vring/Rring with the proportionality constant 
determined by the independent measurements of ℒ(Rring) and ϵ0(Vring) 
in the fully developed turbulent state.

Figure 4e shows the time-averaged enstrophy field for experiments 
in which we varied both f and Vring/Rring. The transitional range predicted 
by matching vortex arrival intervals with the largest eddy turnover time 
is shown by the blue band for comparison. The relationship between fc 
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and Vring/Rring, consistent with predictions, is qualitatively visible from 
the change in shape as the frequency is increased. A second criterion to 
classify whether a given flow is in a blob state is to compute the enstro-
phy flux through a sphere that encloses the blob (Fig. 4c). For baro-
tropic incompressible fluids, the integrated enstrophy flux is given by

ΦZ(t) = ∫
∂𝒱𝒱

Ω
2UinidS, (2)

where Ωi = ϵijk∂jUk is the vorticity. Here ni is the unit exterior normal to 
the surface ∂V, dS is the differential surface element, and ϵijk is the 
Levi-Civita symbol. The phase-averaged (integrated) flux ⟨ΦZ⟩n is shown 
in Fig. 4c for an experiment with f < fc (red) and one with f > fc (blue). 
The red curve shows a trough (influx > outflux), followed by a crest 
(influx < outflux) as the secondary rings transport enstrophy away 
from the considered volume. The blue curve, by contrast, shows little 
to no outflux (Supplementary Video 8). As f is increased for a given 
Vring/Rring, the escaping enstrophy per cycle, ZS, (Fig. 4c, green region) 
decreases smoothly as the frequency is increased (Fig. 4d). This cor-
responds to the suppression of coherent reconnections and develop-
ment of turbulence. Placing a threshold (<5% relative to the values at 
f = 1 Hz) on the escaping enstrophy reveals that the transitional fre-
quency depends on Vring/Rring in a linear fashion (Fig. 4e, orange band). 
The upper limit of the orange band in Fig. 4e lies within 10–20% of the 
predicted transition frequency.

For f > fc, the energy and enstrophy are completely transferred 
to the blob, in sharp contrast to the single-shot experiment (f ≪ fc),  

in which neither are left behind nor in fact penetrate the central 
region. By contrast, the mass associated with the vortex atmospheres 
must flow in and out in equal amounts and cannot be left behind  
(Supplementary Section XA). We find it interesting that the blob  
state can occur in the first place given this fact. Our work raises 
the question of whether vortex ring trains are in some sense opti-
mally suited to confining and ‘feeding’ turbulence. What types of 
flow ‘input’ lead to maximally localized blob states versus delocal-
ized states in which the necessary outward advection destabilizes 
confinement?

Finally, we explore the tunability of our turbulent blob through 
control of the vortex rings. The ring radius Rring tunes the integral scale 
ℒ and the blob radius Rblob. Meanwhile, the energy balance sets the 
smallest scale of turbulence (the Kolmogorov scale η) as it leads to 
ϵ0 = α2

1V
2
ringf ≈ Γ

2
ringf/R

2
ring. Hence, the separation of scales is given by 

ℒ/η ≈ (Γring/ν)
3/4(Rringf/Vring)

1/4 , consistent with the usual relation 

ℒ/η ≈ Re3/4ℒ ≈ (u′ℒ/ν)3/4  f o r  ge n e ra l  t u r b u l e n c e 40.  N o t i c e 
that it is expressed solely by the variables of the injecting vortex rings 
and thus can be completely controlled by tuning their properties.

Can our approach to building a turbulent blob be harnessed to 
endow the turbulence with additional properties? Beyond energy, 
natural candidates include the inviscid invariants of impulse, angular 
impulse and helicity. To test this possibility, we replaced the circular 
orifices in the corners of our tank with 3D-printed masks with helical 
rims. As discussed in Supplementary Section IIIC, we found that this 
method produces helical vortex rings that carry both angular impulse 
and helicity. Colliding these helical rings can in turn produce blobs with 
finite helicity (see Supplementary Section XIB for details). Figure 5  
shows measurements of the total helicity in a blob created by colliding 
helical vortex loops in combinations that inject a total helicity of 
+8ℋring, −8ℋring and 0ℋring, while injecting zero angular impulse and 
zero linear impulse. Although the vorticity field is not completely 
resolved (Supplementary Sections IIIC and XIB), clearly the answer  
is affirmative.

We have discovered that a collection of vortex rings periodically 
fired together leads to a self-confining turbulent blob. This bottom-up 
approach to turbulence provides unique design principles to position, 
localize and control turbulence as a state of flow. In the canonical pic-
ture of the Richardson cascade, injection and dissipation go hand in 
hand at dynamical equilibrium. Nevertheless, their connection often 
remains elusive owing to the uncontrolled injection and evolution of 
vortical structures. The use of coherent, controllable vortex rings over-
comes this issue, enabling us to inject fully controlled arbitrary ratios 
of inviscid conserved quantities. Enabled by the self-confinement 
effect we discovered, our experiment provides a unique control of 
injection and dissipation in turbulence. The turbulent blob, which can 
be measured in its entirety and is free to evolve in isolation, offers a 
playground for fundamental studies on inhomogeneous turbulence 
such as the decay of turbulence without interference from bounda-
ries, the response of turbulence to a periodic drive41–47 and the role  
of inviscid invariants such as helicity48,49 and angular impulse24,25 in  
turbulence. The steadiness of the turbulent blob makes it an inter-
esting alternative to boundary layers50–54 to assess transfer at the 
turbulent/non-turbulent interface. Our work demonstrates how tur-
bulence can be treated as a state of matter that can be controlled and 
manipulated coherently.

Online content
Any methods, additional references, Nature Portfolio reporting 
summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
s41567-023-02052-0.
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Fig. 5 | Repeated collision of helical rings transfers helicity to turbulence in a 
controlled fashion. a, Helical masks generate helical rings. Handedness is 
defined by the relative orientation of the linear impulse ℐring to the angular 
impulse 𝒜𝒜ring, and is tuned from anti-parallel (blue) to parallel (red). b, Helicity is 
transferred from helical rings to a blob of turbulence. Different configurations 
allow injection of helicity with different handedness. The five configurations of 
the measurements are illustrated in the insets, with (net helicity per cycle, net 
angular impulse per cycle) of (8ℋring,0) (red: eight right), (0, 0) (green: four 
right + four left), (0, 0) (yellow: four right + four left), (0, 0) (black: eight planar) 
and (−8ℋring,0) (blue: eight left). A vortex ring with (Vring/Rring, f) = (40 Hz, 5 Hz) 
was used, and the graph shows the helicity integrated over a sphere of radius 
60 mm ≈ Rblob. The shaded band represents the s.e.m.
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Methods
Additional information on the methods can be found in Supplementary 
Section II.

Experimental chamber and actuation
The experimental chamber was fabricated by using a commercial 3D 
printer with ultraviolet-cured polymers (Objet VeroWhite and VeroBlack, 
Objet Connex 350, Stratasys), and was primarily used throughout the 
experiments. A windowed chamber made of acrylic with a similar geom-
etry was also used to measure properties of vortex rings. See Supplemen-
tary Information for the design and the exact dimensions. An electric 
linear actuator (Copley Controls) controls the motion of the acrylic 
piston through signals output from a data acquisition board (PCI-6251, 
National Instruments). As the piston attached to the top surface lifts up, 
fluid gets pulled into the chamber through the orifices, creating eight 
vortex rings travelling towards the centre. A rubber flap attached to the 
top surface around the piston’s entry point prevents unwanted flow in or 
out of the chamber near the piston. We use a transmissive optical encoder 
(EM2, US Digital) to track the motion of the piston with sub-millimetre 
precision. With the tracking data, we extract two important parameters 
regarding the properties of the vortex rings: the formation number 
L/D(ref. 55) (that is, the stroke ratio normalized by the orifice diameter) 
and the effective velocity of the piston veff (Supplementary Section II). 
The former governs the radius and the stability of the generated vortex 
ring, and is a function of the diameter of the orifices Do and that of the 
piston Dp. The latter controls the speed of the vortex ring. To generate 
two sizes of vortex rings (Rring ≈ 15 mm, 25 mm), we used two settings: 
(Dp, Do) = (160.0 mm, 25.6 mm) and (56.7 mm, 12.8 mm). The first setting 
offers a large blob of turbulence, suited for turbulent analysis through 
2D particle image velocimetry. The second setting offers a blob of turbu-
lence small enough with respect to the illuminated volume for 3D PTV to 
conduct the 3D flux measurements for Fig. 4 without clipping the blob. 
We tested effects of the different thickness of the orifices on the gener-
ated rings but found that it did not qualitatively affect the dynamics.

Velocity field extraction
To characterize the flow, we illuminated fluorescent polyethylene 
microspheres (diameter d = 100 μm, density ρ = 1.090 g cc−1; Cospheric) 
with a Nd:YLF single-cavity diode-pumped solid-state laser (<40 mJ 
per pulse, 527 nm). A high-speed camera captured the beads’ motion 
(Phantom v2515 or Phantom VEO4k, Vision Research) on a thin laser 
sheet (thickness 1 mm) for 2D PIV. We varied the frame rate of the 
cameras, depending on the speed of the vortex ring, ranging from 
250 to 3,000 fps, while a ‘quarter rule’56 was always satisfied for the 
largest displacement observed. We extracted the velocity fields by 
using DaVis software (LaVision, Inc.), applying the pyramid algorithm57 
to generate a velocity field for turbulent analysis (energy spectrum, 
structure function, dissipation rate and turbulence length scales) as it 
was shown to extract the small-scale motion more accurately than the 
standard cross-correlational algorithm (Window Distortion Iterative 
Multigrid method58).

For 4D measurements, we set up an array of three to four cameras 
to capture the motion of the same beads illuminated in a volume of 
120 mm × 100 mm × 80 mm, created by two cylindrical lenses. The 
3D particle tracking algorithm called ‘shake the box’59 detected O(105) 
particles from the images of the different perspectives, and recon-
structed their trajectories. Binning the Lagrangian velocities gave the 
underlying Eulerian velocity field at that frame. On average, three to 
seven trajectories were present in each voxel with a width of 2.9 mm. 
For the voxels with no trajectories, the velocity field was interpolated 
linearly or filled with the neighbouring values.

3D visualization
The Lagrangian trajectories obtained by 3D PTV were first character-
ized by their lifespan, travelled distance, average speed and position 

when first detected. We used this information to identify the particles 
transported by the vortex rings. The selected particles were then visual-
ized as pathlines using Houdini rendering software (SideFX). The Sup-
plementary Videos show the pathlines combined of the four recordings 
for each experiment (coherent reconnections and a turbulent state).

For the visualization of the mean flow energy, the mean turbu-
lent energy and the Q-criterion, we used Dragonfly software (Object 
Research Systems).

Data availability
The data contained in the plots within this paper and other findings of 
this study are available from the corresponding author on reasonable 
request.

Code availability
The codes to handle 2D PIV and 3D PTV data, to compute energy spec-
tra, structure functions and dissipation from velocity fields, and to 
visualize flows are available from the corresponding author upon 
reasonable request.
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